精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,已知,CD=8,AE=2,求⊙O的半径.

【答案】解:连接OC, ∵AB是⊙O的直径,CD⊥AB,
∴CE= CD=4,∠OEC=90°,
设OC=OA=x,则OE=x﹣2,
根据勾股定理得:CE2+OE2=OC2
即42+(x﹣2)2=x2
解得x=5,
所以⊙O的半径为5.

【解析】连接OC,根据垂径定理求出CE的长和∠OEC的度数,设OC=OA=x,根据勾股定理列出方程,解方程即可.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2
(1)在图1中,若∠BAC=90°,AB=8,AC=6,AO是BC边上的中线,则AB△AC= , OC△OA=

(2)如图2,在△ABC中,AB=AC=4,∠BAC=120°,求AB△AC、BA△BC的值;

(3)如图3,在△ABC中,AB=AC,AO是BC边上的中线,点N在AO上,且ON= AO.已知AB△AC=14,BN△BA=10,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为(
A.
B.8
C.10
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式.
(2)请直接写出D点的坐标.
(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y= 与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠A=105°,∠B=30°,AC=2.求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD交于点H.
(1)求证:△EDH∽△FBH;
(2)若BD=6,求DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c过点A(4,0),B(﹣4,﹣4).
(1)求抛物线的解析式;
(2)若点P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交抛物线及x轴于C、D两点.请问是否存在这样的点P,使PD=2CD?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案