精英家教网 > 初中数学 > 题目详情

【题目】在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.

【答案】解:∵△ABC是等边三角形,

∴∠B=∠ACB=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∴△EDC是等边三角形,
∴DE=DC=2,
在RT△DEC中,∵∠DEC=90°,DE=2,
∴DF=2DE=4,
∴EF= = =2
【解析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题. 不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.
【考点精析】关于本题考查的等边三角形的性质,需要了解等边三角形的三个角都相等并且每个角都是60°才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB:y=kx+2kx轴于点A,交y轴正半轴于点B,且SOAB=3

(1) A、B两点的坐标

(2) 将直线ABA点顺时针旋转45°,交y轴于点C,求直线AC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着经济的发展,能源与环境已成为人们日益关注的问题.据统计,全球每年大约会产生近3亿吨的塑料垃圾(例如平时用的矿泉水瓶子等)和约5亿吨的废钢铁(例如平时扔掉的易拉罐等),某中学为了培养学生的环保意识,开展了环境保护,从我做起的主题活动,七(2)班同学在活动中积极响应,在甲小区设立了回收塑料瓶和易拉罐的两个垃圾桶,班长小明对2周的收集情况进行了统计,根据下列统计表和废品收购站的价格表,解决下列问题:

(1)全班2周共收集了   斤塑料瓶,收集了   斤易拉罐.

(2)班委会决定给贫困山区的孩子们捐赠一套价值50.4元的励志丛书,你认为按照这样的收集速度,至少需要收集几周才能实现这个愿望?写出计算过程.

(3)七(1)班在乙小区也设立了塑料瓶和易拉罐的回收点,两周收集塑料瓶和易拉罐共计440个,按相同价格出售后,所得金额比七(2)班两个周的废品回收金额多1.8元,求七(1)班同学两周收集的塑料瓶和易拉罐各多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于O,AOC=70,OF平分∠AOD,射线OE在∠BOD的内部(如图),∠BOE=n°.

(1)当n=30时,求∠DOE的度数;

(2)当n=35时,射线OEOF之间有什么位置关系?

(3)若射线OD平分∠EOF,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):

表一

a

b

c

3

4

5

5

12

13

7

24

25

9

41

表二

a

b

c

6

8

10

8

15

17

10

24

26

12

41

(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是   ,a、b、c之间的数量关系是   

(2)仔细观察,表二中a为大于4的偶数,此时b、c的数量关系是   ,a、b、c之间的数量关系是   

(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt△ABC中,当,b=时,斜边c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)如图,南北方向线MN以西为我国领海,以东为公海.上午950分,我缉私艇A发现正东方向有一走私艇C13海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的缉私艇B.已知AC两艇的距离是13海里,AB两艇的距离是5海里,缉私艇BC艇的距离是12海里,若C艇的速度不变,那么它最早会在什么时间进入我国领海?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1和哪些角是内错角?∠1和哪些角是同旁内角?∠2和哪些角是内错角?∠2和哪些角是同旁内角?它们分别是由哪两条直线被哪一条线截成的?

查看答案和解析>>

同步练习册答案