精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB、CD相交于O,AOC=70,OF平分∠AOD,射线OE在∠BOD的内部(如图),∠BOE=n°.

(1)当n=30时,求∠DOE的度数;

(2)当n=35时,射线OEOF之间有什么位置关系?

(3)若射线OD平分∠EOF,求n的值.

【答案】(1)40°;(2)射线OE有OF之间垂直.(3)15

【解析】

(1)根据对顶角相等得到∠DOB=AOC=70°,利用∠DOE=DOB-BOE计算出即可;
(2)根据邻补角的定义得到AOD=180°-AOC=180°-70°=110°,再利用角平分线的定义得到易得∠FOE=DOF+DOE=55°+35°=90°,根据垂直的定义即可得到射线OEOF垂直.

(3)

(1)

(2)射线OEOF垂直.理由如下:

OF平分∠AOD

∴射线OEOF垂直.

(3)

OF平分∠AOD

射线OD平分∠EOF,

解得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO,连结CD
(1)求证:CD是⊙O的切线;
(2)若AB=2,CD= ,求AD的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,O为AC中点,过O点的直线分别于AB、CD交于E、F,连结BF交AC与点M,连结DE、BO,若∠COB=60°,FO=FC

求证:①FB⊥OC,OM=CM;

四边形EBFD是菱形;

③MB:OE=3:2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD中点E、F分别是边AD、AB的中点连接EF.

(1)如图1若点G是边BC的中点连接FG则EF与FG关系为   

(2)如图2若点P为BC延长线上一动点连接FP将线段FP以点F为旋转中心,逆时针旋转900得到线段FQ连接EQ请猜想EF、EQ、BP三者之间的数量关系并证明你的结论

(3)若点P为CB延长线上一动点按照(2)中的作法在图3中补全图形并直接写出EF、EQ、BP三者之间的数量关系    .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80/块,单色地砖的单价是40/块.

(1)两种型号的地砖各采购了多少块?

(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【新知理解】

如图①,点C在线段AB上,图中共有三条线段ABACBC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB巧点”.

线段的中点__________这条线段的巧点;(填不是.

AB = 12cm,点C是线段AB的巧点,则AC=___________cm

【解决问题】

3如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点PQ同时出发,当其中一点到达终点时,运动停止,设移动的时间为ts.t为何值时,APQ三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABCDE在同一直线上,且ACBDE是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;

(2)当AD=10,AB=3时,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.

(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.
求证:AE是△ABC的一条特异线.
(2)如图2,已知BD是△ABC的一条特异线,其中∠A= ,∠ABC为钝角,求出所有可能的∠ABC的度数.
(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角
度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.

查看答案和解析>>

同步练习册答案