如图某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:每购买500元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准500、20、100、50、10的区域,顾客就可以分别获得500元、200元、100元、50元、10元的购物券一张。(转盘等分成20份)
![]()
(1)小华购物450元,他获得购物券的概率是多少?
(2)小丽购物600元,那么她获得100元以上(包括100元)券的概率是多少?
科目:初中数学 来源:北师大新版七年级上册《1.2展开与折叠》同步练习 题型:填空题
图1是一个正方体的展开图,该正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是_____.
![]()
查看答案和解析>>
科目:初中数学 来源:江苏省南京市鼓楼区2017-2018学年八年级下期末数学试卷 题型:解答题
小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?
查看答案和解析>>
科目:初中数学 来源:江苏省南京市鼓楼区2017-2018学年八年级下期末数学试卷 题型:单选题
如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
![]()
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中数学 来源:重庆市南岸区2017-2018学年下学期期末考试七年级数学试卷 题型:解答题
著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即
,这就是著名的欧拉恒等式,有人称这样的数为“不变心的数”.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.
【动手一试】
试将
改成两个整数平方之和的形式.
;
【阅读思考】
在数学思想中,有种解题技巧称之为“无中生有”.例如问题:将代数式
改成两个平方之差的形式.【解析】
原式
﹒
【解决问题】
请你灵活运用利用上述思想来解决“不变心的数”问题:将代数式
改成两个整数平方之和的形式(其中a、b、c、d均为整数),并给出详细的推导过程﹒
查看答案和解析>>
科目:初中数学 来源:重庆市南岸区2017-2018学年下学期期末考试七年级数学试卷 题型:填空题
等腰三角形的两边长分别为3cm和6cm,这个等腰三角形的周长为_______cm.
查看答案和解析>>
科目:初中数学 来源:重庆市南岸区2017-2018学年下学期期末考试七年级数学试卷 题型:单选题
如图,长方形纸片ABCD的边长AB=
,AD=2,将长方形纸片沿EF折叠,使点A与点C重合,如果∠BCE=30°,则∠DFE的大小是( )
![]()
A. 120° B. 110° C. 115° D. 105°
查看答案和解析>>
科目:初中数学 来源:2017-2018人教版九年级下册数学综合测试卷 题型:解答题
已知反比例函数的图象经过点P(2,﹣3).
(1)求该函数的解析式;
(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.
查看答案和解析>>
科目:初中数学 来源:人教版2018秋九年级数学上册练习:第一学期期末测试卷 题型:解答题
如图,抛物线y=ax2+bx+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等,直线y=3x-7与这条抛物线交于两点,其中一点横坐标为4,另一点是这条抛物线的顶点M.
(1)求顶点M的坐标.
(2)求这条抛物线对应的函数解析式.
(3)P为线段BM上一点(P不与点B,M重合),作PQ⊥x轴于点Q,连接PC,设OQ=t,四边形PQAC的面积为S,求S与t的函数解析式,并直接写出t的取值范围.
(4)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,求出点N的坐标,若不存在,说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com