精英家教网 > 初中数学 > 题目详情

如图,AB是⊙0的直径,AC切⊙0于点A,AD是⊙0的弦,OC⊥AD于F交⊙0于E,连接DE,BE,BD.AE.
(1)求证:∠C=∠BED;
(2)如果AB=10,tan∠BAD=数学公式,求AC的长;
(3)如果DE∥AB,AB=10,求四边形AEDB的面积.

(1)证明:∵AB是⊙O的直径,CA切⊙O于A,
∴∠C+∠AOC=90°;
又∵0C⊥AD,
∴∠OFA=90°,
∴∠AOC+∠BAD=90°,
∴∠C=∠BAD.
又∵∠BED=∠BAD,
∴∠C=∠BED.

(2)解:由(1)知∠C=∠BAD,tan∠BAD=
∴tan∠C=
在Rt△OAC中,tan∠C=,且OA=AB=5,
,解得

(3)解:∵OC⊥AD,∴,∴AE=ED,
又∵DE∥AB,∴∠BAD=∠EDA,∴
∴AE=BD,
∴AE=BD=DE,

∴∠BAD=30°,
又∵AB是直径,∴∠ADB=90°,
∴BD=AB=5,DE=5,
在Rt△ABD中,由勾股定理得:AD=
过点D作DH⊥AB于H,
∵∠HAD=30°,∴DH=AD=
∴四边形AEDB的面积=
分析:(1)根据切线性质、垂直的性质、直角三角形的两个锐角互余的性质求得∠C+∠AOC=∠AOC+∠BAD=90°,即∠C=∠BAD;然后由圆周角定理推知∠BED=∠BAD;最后由等量代换证得∠C=∠BED;
(2)根据锐角三角函数的定义求AC的长;
(3)根据已知条件推知AE=BD=DE,然后由圆的弧、弦、圆心角间的关系知,从而求得∠BAD=30°;然后由直径AB所对的圆周角∠ADB=90°可以求得直角三角形ABD中30°所对的直角边是斜边的一半BD=AB=5,DE=5;最后(过点D作DH⊥AB于H)在直角三角形HDA中求得高线DH的长度,从而求得梯形ABDE的面积.
点评:本题考查了圆周角定理、勾股定理、平行线的性质以及锐角三角函数的定义.解题时,注意知识的综合利用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

小亮家窗户上的遮雨罩是一种玻璃钢制品,它的顶部是圆柱侧面的一部分(如图1),它的侧面边缘上有两条圆弧(如图2),其中顶部圆弧AB的圆心O1在竖直边缘AD上,另一条圆弧BC的圆心O2在水平边缘DC的延长线上,其圆心角为90°,请你根据所标示的尺寸(单位:cm)解决下面的问题.(玻璃钢材料的厚度忽略不计,π取3.1416)
(1)计算出弧AB所对的圆心角的度数(精确到0.01度)及弧AB的长度;(精确到0.1cm)
(2)计算出遮雨罩一个侧面的面积;(精确到1cm2
(3)制做这个遮雨罩大约需要多少平方米的玻璃钢材料.(精确到精英家教网0.1平方米)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步练习册答案