精英家教网 > 初中数学 > 题目详情
如图,已知四边形ABCD,AE交BC的延长线于E、交边DC于F,△ADF与△FCE全等.
(1)若AB=2,AD=1,AE=2
3
,∠BAE=90°,求边BC的长;
(2)若∠DAB+∠DCB=180°,求证:∠B=∠DCB.
分析:(1)首先根据全等三角形的性质可得CE=AD=1,再利用勾股定理计算出BE的长,进而得到BC的长;
(2)根据∠DAB+∠DCB=180°,∠DCE+∠DCB=180°可得∠DAB=∠DCE,再说明∠ADF=∠FCE可得AD∥BE,再根据平行线的性质可得∠DAB+∠B=180°,进而得到∠B=∠DCB.
解答:(1)解:∵△ADF与△FCE全等,∠AFD=∠CFE,
∴CE=AD=1.
∵∠BAE=90°,
在直角三角形ABE中,
BE=
AE2+AB2
=
12+4
=4.
∴BC=BE-CE=4-1=3.

(2)证明:∵∠DAB+∠DCB=180°,∠DCE+∠DCB=180°,
∴∠DAB=∠DCE.
∴∠DAF≠∠DCE.
又∵△ADF与△FCE全等,∠AFD=∠CFE,
∴∠ADF=∠FCE.
∴AD∥BE,
∴∠DAB+∠B=180°,
∴∠B=∠DCB.
点评:此题主要考查了全等三角形的判定与性质,以及勾股定理的应用,关键是掌握全等三角形对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案