精英家教网 > 初中数学 > 题目详情

【题目】写出一个一元一次方程,要求:解此方程时第一步必须是利用合并同类项法则合并同类项.我写的方程为_____

【答案】x+3x=5(答案不唯一).

【解析】

同类项是指具有相同的字母,并且相同字母的指数也相同,据此即可解题.

解:这个方程可以是x+3x5(答案不唯一).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,∠E=∠F,∠B=∠C,AE=AF,以下结论:①∠FAN=∠EAM;②EM=FN;③△ACN≌△ABM;④CD=DN.其中正确的有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系?并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点(-1,m)和点(1,n)在一次函数y=-3x+6的图像上,则m______n(“>”“<”或“).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn.

(1)求d的值;

(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;

(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a-b =a+( )
A.-b
B.b
C.a
D.-a

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:1﹣(2x﹣5)=7﹣3x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于A、B两点,且B(1,0)

(1)求抛物线的解析式和点A的坐标;

(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;

(3)如图2,已知直线分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案