相关习题
 0  348966  348974  348980  348984  348990  348992  348996  349002  349004  349010  349016  349020  349022  349026  349032  349034  349040  349044  349046  349050  349052  349056  349058  349060  349061  349062  349064  349065  349066  349068  349070  349074  349076  349080  349082  349086  349092  349094  349100  349104  349106  349110  349116  349122  349124  349130  349134  349136  349142  349146  349152  349160  366461 

科目: 来源: 题型:

【题目】某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)化简: (2)解方程:

【答案】(1) ;(2)x=-2.

【解析】1)先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分化简;

(2)两边都乘以最简公分母2(x+3),把分式方程化为整式方程求解,求出x的值不要忘记检验.

(1)原式===;

(2)解:去分母得:

解得:x=2,

经检验x=2是分式方程的解

原方程的解x=2

点睛:本题考查了分式的混合运算和解分式方程,熟练掌握分式的运算法则和解分式方程的方法是解答本题的关键.

型】解答
束】
20

【题目】小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:

(1)小张同学共调查了    名居民的年龄,扇形统计图中a=    

(2)补全条形统计图,并注明人数;

(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为    

(4)若该辖区年龄在0~14岁的居民约有2400人,请估计该辖区居民有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:

(1) (2)

(3)

【答案】(1) ;(2) ;(3) .

【解析】1)先化成最简二次根式,再合并同类二次根式即可;

(2)先算乘法和除法,再合并同类项或同类二次根式即可;

(3)第一项根据平方差公式计算,第二项根据完全平方公式计算,然后合并同类项或同类二次根式即可;

(1)原式==

(2)原式==

(3)原式==

点睛:本题考查了二次根式的性质与化简,二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.

型】解答
束】
19

【题目】(1)化简: (2)解方程:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, ABC中,AC=3、AB=4、BC=5, PBC上一动点,PGAC于点GPHAB

于点HMGH的中点,P在运动过程中PM的最小值为(

A. 2.4 B. 1.4

C. 1.3 D. 1.2

【答案】D

【解析】分析: AC=3、AB=4、BC=5,AC2+AB2=BC2,则A=90°,再结合PGACPHAB可证四边形AGPH是矩形;连接AP,可知当APBCAP最短,结合矩形的两对角线相等和面积法,求出GH的值,

详解:∵AC=3、AB=4、BC=5,

AC2=9,AB2=16,BC2=25,

AC2+AB2=BC2

∴∠A=90°.

PGACPHAB

∴∠AGP=AHP=90°

四边形AGPH是矩形.

连接AP

GH=AP.

∵当APBC时,AP最短,

3×4=5AP

AP=

PM的最小值为1.2.

故选D.

点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.

型】单选题
束】
18

【题目】计算:

(1) (2)

(3)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD//OB,则图中休闲区(阴影部分)的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】将一副三角尺按如图方式进行摆放,∠1、2不一定互补的是(  )

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】观察下面的变形规律:

;….

解答下面的问题:

(1)仿照上面的格式请写出=   

(2)若n为正整数,请你猜想=   

(3)基础应用:计算:

(4)拓展应用1:解方程: =2016

(5)拓展应用2:计算:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A2y1)、B4y2)都在反比例函数k0)的图象上y1y2的大小关系为(  )

A. y1y2 B. y1y2 C. y1=y2 D. 无法确定

【答案】B

【解析】试题k0时,y=在每个象限内,yx的增大而增大,∴y1y2,故选B.

考点:反比例函数增减性.

型】单选题
束】
17

【题目】如图, ABC中,AC=3、AB=4、BC=5, PBC上一动点,PGAC于点GPHAB

于点HMGH的中点,P在运动过程中PM的最小值为(

A. 2.4 B. 1.4

C. 1.3 D. 1.2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.

(1)求k的值.

(2)求△ABC的面积.

(3)在直线y=kx-6上是否存在异于点C的另一点P,使得△ABP△ABC的面积相等,请直接写出点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.

(1)如图1,若∠AOB=120°,∠AOC=30°,求∠EOF的度数?

(2)如图2,若∠AOB=α,求∠EOF的度数,(用含α的式子表示)

(3)若将题中的“平分”的条件改为“∠EOB=∠COB,∠COF=∠COA,且∠AOB=α,求∠EOF的度数(用含α的式子表示)

查看答案和解析>>

同步练习册答案