科目: 来源: 题型:
【题目】某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中个抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)化简:
(2)解方程:
.
【答案】(1)
或
;(2)x=-2.
【解析】(1)先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分化简;
(2)两边都乘以最简公分母2(x+3),把分式方程化为整式方程求解,求出x的值不要忘记检验.
(1)原式=
=
=
或
;
(2)解:去分母得:
,
解得:x=﹣2,
经检验x=﹣2是分式方程的解,
∴原方程的解为x=﹣2
点睛:本题考查了分式的混合运算和解分式方程,熟练掌握分式的运算法则和解分式方程的方法是解答本题的关键.
【题型】解答题
【结束】
20
【题目】小张同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形统计图和条形统计图:
![]()
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)小张同学共调查了 名居民的年龄,扇形统计图中a= ;
(2)补全条形统计图,并注明人数;
(3)若在该辖区中随机抽取一人,那么这个人年龄是60岁及以上的概率为 ;
(4)若该辖区年龄在0~14岁的居民约有2400人,请估计该辖区居民有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】计算:
(1)
(2)![]()
(3)![]()
【答案】(1)
;(2)
;(3)
.
【解析】(1)先化成最简二次根式,再合并同类二次根式即可;
(2)先算乘法和除法,再合并同类项或同类二次根式即可;
(3)第一项根据平方差公式计算,第二项根据完全平方公式计算,然后合并同类项或同类二次根式即可;
(1)原式=
= ![]()
(2)原式=
=![]()
(3)原式=
=![]()
点睛:本题考查了二次根式的性质与化简,二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.
【题型】解答题
【结束】
19
【题目】(1)化简:
(2)解方程:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图, 在△ABC中,AC=3、AB=4、BC=5, P为BC上一动点,PG⊥AC于点G,PH⊥AB
于点H,M是GH的中点,P在运动过程中PM的最小值为( )
![]()
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,则∠A=90°,再结合PG⊥AC,PH⊥AB,可证四边形AGPH是矩形;连接AP,可知当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法,求出GH的值,
详解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四边形AGPH是矩形.
连接AP,
![]()
∴GH=AP.
∵当AP⊥BC时,AP最短,
∴3×4=5AP,
∴AP=
,
∴PM的最小值为1.2.
故选D.
点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.
【题型】单选题
【结束】
18
【题目】计算:
(1)
(2)![]()
(3)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6m,C是OA的中点,点D在弧AB上,CD//OB,则图中休闲区(阴影部分)的面积是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】观察下面的变形规律:
;
;
;….
解答下面的问题:
(1)仿照上面的格式请写出
= ;
(2)若n为正整数,请你猜想
= ;
(3)基础应用:计算:
.
(4)拓展应用1:解方程:
=2016
(5)拓展应用2:计算:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A(2,y1)、B(4,y2)都在反比例函数
(k<0)的图象上,则y1、y2的大小关系为( )
A. y1>y2 B. y1<y2 C. y1=y2 D. 无法确定
【答案】B
【解析】试题∵当k<0时,y=
在每个象限内,y随x的增大而增大,∴y1<y2,故选B.
考点:反比例函数增减性.
【题型】单选题
【结束】
17
【题目】如图, 在△ABC中,AC=3、AB=4、BC=5, P为BC上一动点,PG⊥AC于点G,PH⊥AB
于点H,M是GH的中点,P在运动过程中PM的最小值为( )
![]()
A. 2.4 B. 1.4
C. 1.3 D. 1.2
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C.
(1)求k的值.
(2)求△ABC的面积.
(3)在直线y=kx-6上是否存在异于点C的另一点P,使得△ABP与△ABC的面积相等,请直接写出点P的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.
![]()
(1)如图1,若∠AOB=120°,∠AOC=30°,求∠EOF的度数?
(2)如图2,若∠AOB=α,求∠EOF的度数,(用含α的式子表示)
(3)若将题中的“平分”的条件改为“∠EOB=
∠COB,∠COF=
∠COA,且∠AOB=α,求∠EOF的度数.(用含α的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com