科目: 来源: 题型:
【题目】2013年5月7日浙江省11个城市的空气质量指数(AQI)如图所示: ![]()
(1)这11个城市当天的空气质量指数的极差、众数和中位数分别是多少?
(2)当0≤AQI≤50时,空气质量为优.求这11个城市当天的空气质量为优的频率;
(3)求宁波、嘉兴、舟山、绍兴、台州五个城市当天的空气质量指数的平均数.
查看答案和解析>>
科目: 来源: 题型:
【题目】今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )
![]()
A.小明中途休息用了20分钟
B.小明休息前爬山的平均速度为每分钟70米
C.小明在上述过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标;
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,写出A′B′C′的三个顶点坐标;
(3)求△ABC的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰直角三角形ABC顶点A在x轴上,∠BCA=90°,AC=BC=2
,反比例函数y=
(x>0)的图象分别与AB,BC交于点D,E.连结DE,当△BDE∽△BCA时,点E的坐标为 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC是等边三角形,点D是BC边上一动点,点E,F分别在AB,AC边上,连接AD,DE,DF,且∠ADE=∠ADF=60°.
小明通过观察、实验,提出猜想:在点D运动的过程中,始终有AE=AF,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:利用AD是∠EDF的角平分线,构造△ADF的全等三角形,然后通过等腰三角形的相关知识获证.
想法2:利用AD是∠EDF的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法3:将△ACD绕点A顺时针旋转至△ABG,使得AC和AB重合,然后通过全等三角形的相关知识获证.
请你参考上面的想法,帮助小明证明AE=AF.(一种方法即可)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小刚根据学习“数与式”的经验,想通过由“特殊到一般”的方法探究下面二次根式的运算规律.
以下是小刚的探究过程,请补充完整;
(1)具体运算,发现规律.
特例1:
;特例2:
;特例3:
;特例4: (举一个符合上述运算特征的例子)
(2)观察、归纳,得出猜想.
如果n为正整数,用含n的式子表示这个运算规律; .
(3)证明猜想,确认猜想的正确性.
查看答案和解析>>
科目: 来源: 题型:
【题目】7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( ) ![]()
A.a=
b
B.a=3b
C.a=
b
D.a=4b
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com