相关习题
 0  357493  357501  357507  357511  357517  357519  357523  357529  357531  357537  357543  357547  357549  357553  357559  357561  357567  357571  357573  357577  357579  357583  357585  357587  357588  357589  357591  357592  357593  357595  357597  357601  357603  357607  357609  357613  357619  357621  357627  357631  357633  357637  357643  357649  357651  357657  357661  357663  357669  357673  357679  357687  366461 

科目: 来源: 题型:

【题目】某批发门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.新年来临之际,该门市为促销制定了两种优惠方案:

方案一:买一件甲种商品就赠送一件乙种商品;

方案二:按购买金额打八折付款.

某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.

(1)分别写出优惠方案一购买费用y1(元)、优惠方案二购买费用y2元)与所买乙种商品x(件)之间的函数关系式;

(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用wm之间的关系式;利用wm之间的关系式说明怎样购买最实惠.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx﹣k的图象的交点坐标为A(m,2).

(1)求m的值和一次函数的解析式;

(2)设一次函数y=kx﹣k的图象与y轴交于点B,求△AOB的面积;

(3)直接写出使函数y=kx﹣k的值大于函数y=x的值的自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿ADEFGB的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示yx之间的函数关系,根据图象解决以下问题:

(1)慢车的速度为_____km/h,快车的速度为_____km/h;

(2)解释图中点C的实际意义并求出点C的坐标;

(3)求当x为多少时,两车之间的距离为500km.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.

(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;

(2)在第二象限内的抛物线上有一点P,当PABA时,求PAB的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,AC=BC,点D在BC上,作ADF=B,DF交外角ACE的平分线CF于点F.

(1)求证:CFAB

(2)若CAD=20°,求CFD的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,点A(﹣30),点B04),点Cx轴正半轴上,若△ABC是等腰三角形,那么所有满足条件的点C的坐标是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知一次函数ykx+b的图象与x轴,y轴分别交于点(20),点(03).有下列结论:图象经过点(1,﹣3);关于x的方程kx+b0的解为x2关于x的方程kx+b3的解为x0x2时,y0.其中正确的是(  )

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)

若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

同步练习册答案