相关习题
 0  359774  359782  359788  359792  359798  359800  359804  359810  359812  359818  359824  359828  359830  359834  359840  359842  359848  359852  359854  359858  359860  359864  359866  359868  359869  359870  359872  359873  359874  359876  359878  359882  359884  359888  359890  359894  359900  359902  359908  359912  359914  359918  359924  359930  359932  359938  359942  359944  359950  359954  359960  359968  366461 

科目: 来源: 题型:

【题目】如图,直线l1y1=-x+my轴交于点A(06),直线l2y2=kx+1分别与x轴交于点B(-20),与y轴交于点C,两条直线l1l2相交于点D,连接AB

(1)求两直线l1l2交点D的坐标;

(2)求△ABD的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

科目: 来源: 题型:

【题目】某水果经销商上月份销售一种新上市的水果,平均售价为10/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系,并且得到了表中的数据:

价格x(元/千克)

7

5

价格y(千克)

2000

4000

1)求yx之间的函数解析式;

2)已知该种水果上月份的成本价为5/千克,本月份的成本价为4/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】是不小于的实数,关于的方程有两个不相等的实数根

1)求的取值范围;

2)若,求值;

3)求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图四边形 ABCO 是菱形以点 O 为坐标原点,OC 所在直线为轴建立平面直角坐标系.若点 A 的坐 标为(-5,12),直线 AC、边 AB 轴的交点分别是点 D 与点 E,连接 BD.

(1)求菱形 ABCO 的边长

(2) BD 所在直线的解析式

(3)直线 AC 上是否存在一点 P 使得的面积相等?若存在请直接写出点 P 的坐标若不存在请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AD平分∠BACBC于点D,OAB上一点,经过点A,D⊙O分别交AB,AC于点E,F,连接OFAD于点G.

(1)求证:BC⊙O的切线;

(2)AB=x,AF=y,试用含x,y的代数式表示线段AD的长;

(3)BE=8,sinB=,求DG的长,

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图边长为1的正方形ABCDAC DB交于点HDE平分ADBAC于点E联结BE并延长交边AD于点F

1求证DC=EC

2求△EAF的面积

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为xa的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,需要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为两个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解,各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想﹣转化,即把未知转化为已知来求解.

用“转化“的数学思想,我们还可以解一些新的方程.

例如,解一元三次方程x3+x22x0,通过因式分解把它转化为xx2+x2)=0,通过解方程x0x2+x20,可得原方程x3+x22x0的解.

再例如,解根号下含有来知数的方程:x,通过两边同时平方把它转化为2x+3x2,解得:x13x2=﹣1.因为2x+30,且x0,所以x=﹣1不是原方程的根,x3是原方程的解.

1)问题:方程x3+x22x0的解是x10x2   x3   

2)拓展:求方程x1的解;

3)应用:在一个边长为1的正方形中构造一个如图所示的正方形;在正方形ABCD边上依次截取AEBFCGDH,连接AGBHCEDF,得到正方形MNPQ,若小正方形MNPQ(图中阴影部分)的边长为,求n的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某店只销售某种进价为40/kg的产品,已知该店按60kg出售时,每天可售出100kg,后来经过市场调查发现,单价每降低1元,则每天的销售量可增加10kg.

(1)若单价降低2元,则每天的销售量是_____千克,每天的利润为_____元;若单价降低x元,则每天的销售量是_____千克,每天的利润为______元;(用含x的代数式表示)

(2)若该店销售这种产品计划每天获利2240元,单价应降价多少元?

(3)当单价降低多少元时,该店每天的利润最大,最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线yax2ax2aa为常数且不等于0)与x轴的交点为AB两点,且A点在B的右侧.

1)当抛物线经过点(38),求a的值;

2)求AB两点的坐标;

3)若抛物线的顶点为M,且点Mx轴的距离等于AB3倍,求抛物线的解析式.

查看答案和解析>>

同步练习册答案