精英家教网 > 高中数学 > 题目详情
2.已知椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右焦点分别为F1、F2,过点F1作倾斜角为$\frac{π}{3}$的直线交椭圆于A、B两点,求:
(1)弦AB的长
(2)△F2AB的面积.

分析 (1)通过椭圆方程可知F1(-1,0)、F2(1,0),进而可知过点F1作倾斜角为$\frac{π}{3}$的直线方程为y=$\sqrt{3}$(x+1),通过联立直线与椭圆方程可知A、B两点的横坐标,进而利用两点间距离公式计算可得结论;
(2)通过(1)可知,点F2(1,0)到直线y=$\sqrt{3}$(x+1)的距离为d,进而利用${S}_{△{F}_{2}AB}$=$\frac{1}{2}$d•|AB|计算即得结论.

解答 解:(1)依题意,F1(-1,0)、F2(1,0),
∴过点F1作倾斜角为$\frac{π}{3}$的直线方程为:y=$\sqrt{3}$(x+1),
联立直线与椭圆方程,消去y整理得:5x2+8x=0,
解得:x=0或x=-$\frac{8}{5}$,
∴|AB|=2$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=2•$\frac{8}{5}$=$\frac{16}{5}$;
(2)由(1)可知,点F2(1,0)到直线y=$\sqrt{3}$(x+1)的距离为d,
则d=$\frac{|\sqrt{3}-0+\sqrt{3}|}{\sqrt{3+1}}$=$\sqrt{3}$,
${S}_{△{F}_{2}AB}$=$\frac{1}{2}$d•|AB|=$\frac{1}{2}$•$\sqrt{3}$•$\frac{16}{5}$=$\frac{8\sqrt{3}}{5}$.

点评 本题考查直线与圆锥曲线的关系,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)已知函数$f(x)=\left\{\begin{array}{l}\frac{3}{2}\;x+3\;\;(-2≤x<0)\\-\frac{1}{2}x+3\;\;\;\;(0≤x<2)\\ 2\;\;\;\;(2≤x<4)\end{array}\right.$
①画出函数的图象;
②利用函数的图象写出函数的值域
(2)已知函数$y=\sqrt{ax+1}(a<0,且$且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若关于x的方程lg3x×lg4x-a2=0有两个不相等的实数根,则方程的两根之积为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{\sqrt{2}}{4}$D.-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,设A,B,C是不共线的三点,$\overrightarrow{AB}=\overrightarrow p,\overrightarrow{AC}=\overrightarrow q$,若点D在线段BC上,且BC:CD=5:2,则向量$\overrightarrow{AD}$=$\frac{7}{5}\overrightarrow{q}-\frac{2}{5}\overrightarrow{p}$(用向量$\overrightarrow p,\overrightarrow q$表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4-x2
(1)试判断函数f(x)的奇偶性并说明理由;
(2)用定义证明函数f(x)在[0,+∞)是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2-2x-3>0,且¬p的¬q必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cos$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{x}$)(ω>0)的最小正周期为2π.
(1)求函数f(x)的表达式;
(2)设θ∈(0,$\frac{π}{2}$),且f(θ)=$\sqrt{3}$+$\frac{6}{5}$,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(Ⅰ)给定线段AB=4,用斜二测画法作正方体ABCD-A1B1C1D1
(Ⅱ)设P是棱A1B1上一点,$P{B_1}=\frac{1}{4}{A_1}{B_1}$,求多面体P-BCC1B1的体积.

查看答案和解析>>

同步练习册答案