分析 (1)把已知的函数解析式变形,结合其最小正周期求出ω,则函数解析式可求;
(2)把f(θ)=$\sqrt{3}$+$\frac{6}{5}$代入函数解析式求得$sin(θ-\frac{π}{3})=-\frac{3}{5}$,结合θ的范围得到cos($θ-\frac{π}{3}$),再由cosθ=cos[$(θ-\frac{π}{3})+\frac{π}{3}$]展开两角和的余弦得答案.
解答 解:(1)f(x)=2cos$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{x}$)
=$2\sqrt{3}co{s}^{2}\frac{ωx}{2}-2sin\frac{ωx}{2}cos\frac{ωx}{2}$
=$\sqrt{3}(1+cosωx)-sinωx$
=$\sqrt{3}+\sqrt{3}cosωx-sinωx$
=$\sqrt{3}-2sin(ωx-\frac{π}{3})$.
∵f(x)的最小正周期为2π,∴ω=1,
∴f(x)=$\sqrt{3}-2sin(x-\frac{π}{3})$;
(2)f(θ)=$\sqrt{3}-2sin(θ-\frac{π}{3})$=$\sqrt{3}$+$\frac{6}{5}$,
∴$sin(θ-\frac{π}{3})=-\frac{3}{5}$,
∵θ∈(0,$\frac{π}{2}$),∴$θ-\frac{π}{3}∈$($-\frac{π}{3},\frac{π}{6}$),
则cos($θ-\frac{π}{3}$)=$\frac{4}{5}$.
则cosθ=cos[$(θ-\frac{π}{3})+\frac{π}{3}$]=cos($θ-\frac{π}{3}$)cos$\frac{π}{3}$-sin($θ-\frac{π}{3}$)sin$\frac{π}{3}$
=$\frac{4}{5}×\frac{1}{2}-(-\frac{3}{5})×\frac{\sqrt{3}}{2}$=$\frac{4+3\sqrt{3}}{10}$.
点评 本题考查正弦函数的图象和性质,考查了三角恒等变换中的应用,是基础的计算题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | (0,2] | C. | [0,2] | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com