精英家教网 > 高中数学 > 题目详情
16.某公司将进货单价为8元一个的商品按10元一个出售,每天可以卖出100个,若这种商品的售价每个上涨1元,则销售量就减少10个.
(1)求售价为13元时每天的销售利润;
(2)求售价定为多少元时,每天的销售利润最大,并求最大利润.

分析 (1)售价为13元时,求出销售量减少的个数,然后求解当售价为13元时每天的销售利润.
(2)设售价定为x元时,每天的销售利润为y元,列出函数的解析式,利用二次函数的最值求解即可.

解答 (本小题满分12分)
解:(1)依题意,可知售价为13元时,销售量减少了:10×(13-10)=30(个)
所以,当售价为13元时每天的销售利润为:(13-8)×(100-30)=350(元)   …(4分)
(2)设售价定为x元时,每天的销售利润为y元,依题意,得y=(x-8)[100-(x-10)•10]=-10x2+280x-1600=-10(x-14)2+360(10≤x≤20)
∴当x=14时,y取得最大值,且最大值为ymax=360.
即售价定为14元时,每天的销售利润最大,最大利润为360元.…(12分)

点评 本题考查函数与方程的应用,列出函数的解析式是解题的关键,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(log${\;}_{\frac{1}{2}}$x)2-3log${\;}_{\frac{1}{2}}$x,x∈[2,4],试求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4-x2
(1)试判断函数f(x)的奇偶性并说明理由;
(2)用定义证明函数f(x)在[0,+∞)是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P是非等边△ABC外接圆上任意一点,求:当P分别位于何处时,PA2+PB2+PC2分别取到最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2cos$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{x}$)(ω>0)的最小正周期为2π.
(1)求函数f(x)的表达式;
(2)设θ∈(0,$\frac{π}{2}$),且f(θ)=$\sqrt{3}$+$\frac{6}{5}$,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出下面的程序所描述的一个程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过点(0,-1),l与圆x2+y2=2y有两个公共点,则l的斜率的取值范围是(  )
A.$(-∞,-\sqrt{3})∪(\sqrt{3},+∞)$B.$(-\sqrt{3},\sqrt{3})$C.$(-∞,-\frac{1}{2})∪(\frac{1}{2},+∞)$D.$(-\frac{1}{2},\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学篮球队进行了4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加;若王浩同学在4次测试中每次合格的概率组成一个公差为$\frac{1}{5}$的等差数列,他第一次测试合格的概率不超过$\frac{1}{2}$,且他直到第二次测试才合格的概率为$\frac{8}{25}$;
(1)求王浩同学第一次参加测试就合格的概率;
(2)求王浩同学参加测试的次数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式$\sqrt{-{x}^{2}-4x-3}$≤x+2-m,对[-3,-1]恒成立,则实数m的取值范围是m$≤-\sqrt{2}$.

查看答案和解析>>

同步练习册答案