精英家教网 > 高中数学 > 题目详情
已知双曲线,过B(1,1)能否作直线l,使l与双曲线交于P,Q两点,且B是线段PQ的中点,这样的直线如果存在,求出它的方程;如果不存在,说明理由.
【答案】分析:先假设存在这样的直线l,分类讨论:斜率存在和斜率不存在设出直线l的方程,①当k存在时,与双曲线方程联立,消去y,得到关于x的一元二次方程,直线与双曲线相交于两个不同点,则△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,可求k的范围,再由M是线段AB的中点,则=1,可求k,看是否矛盾,②当k不存在时,直线经过点M但不满足条件,故符合条件的直线l不存在,综合可求
解答:解:设过点B(1,1)的直线方程为y=k(x-1)+1或x=1
(1)当k存在时有
得(2-k2)x2+(2k2-2k)x-k2+2k-3=0 (1)
当直线与双曲线相交于两个不同点,则必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,
∴k<
设P(x1,y1),Q(x2,y2
∴x1+x2= 又B(1,1)为线段AB的中点
=1 即
∴k=2
当k=2,使2-k2≠0但使△<0
因此当k=2时,方程(1)无实数解
故过点m(1,1)与双曲线交于两点A、B且M为线段AB中点的直线不存在.
(2)当x=1时,直线经过点M但不满足条件,
综上,符合条件的直线l不存在
点评:本题考察了直线与双曲线的位置关系,特别是相交时的中点弦问题,方程的根与系数关系的应用,及利用方程思想判断直线与曲线位置关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线c:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率为
5

(1)求双曲线的方程;
(2)若有两个半径相同的圆c1,c2,它们的圆心都在x轴上方且分别在双曲线c的两渐近线上,过双曲线的右焦点且斜率为-1的直线l与圆c1,c2都相切,求两圆c1,c2圆心连线斜率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线方程为x2-
y2
4
=1
,过P(1,0)的直线L与双曲线只有一个公共点,则L的条数共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)与圆O:x2+y2=3相切,过C的一个焦点且斜率为
3
的直线也与圆O相切.
(Ⅰ)求双曲线C的方程;
(Ⅱ)P是圆O上在第一象限的点,过P且与圆O相切的直线l与C的右支交于A、B两点,△AOB的面积为3
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:0108 期中题 题型:解答题

已知双曲线,过P(1,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB中点?若能,求出l的方程;若不能,请说明理由。

查看答案和解析>>

同步练习册答案