精英家教网 > 高中数学 > 题目详情
已知a、b、c,其中a>0,a+b+c=600,S2为a,b,c的方差.当它们的方差S2最大时,写出a,b,c的值,并求此时方差S2的值.
考点:极差、方差与标准差
专题:概率与统计
分析:根据题意,求出a、b、c的平均数,计算方差S2,求出方差S2最大时a,b,c的值即可.
解答: 解:∵a+b+c=600,
∴a、b、c的平均数是200,
∴方差S2=
1
3
[(a-200)2+(b-200)2+(c-200)2]
=
1
3
[a2+b2+c2-400(a+b+c)+120000]
=
1
3
(a2+b2+c2-120000);
又∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≥a2+b2+c2,且a>0,
∴当a=600,b=c=0时,方差S2最大,
此时方差S2=
1
3
(6002-120000)=80000.
点评:本题考查了求数据的平均数与方差的问题,解题时应灵活利用平均数与方差的计算公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4x+3.
(1)若f(x)的定义域为[-3,2],写出f(x)的单调区间,并指出其单调性(不要求证明);
(2)若f(ax+b)=x2+10x+24,其中a,b为常数,求5a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆
x2
a2
+
y2
b2
=1的右焦点为F(1,0),A为椭圆的上顶点,椭圆上的点到右焦点的最短距离为
2
-1.过F作椭圆的弦PQ,直线AP,AQ分别交直线x-y-2=0于点M,N.
(1)求椭圆的方程;
(2)求当|MN|最小时,直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a
2
1
+
y2
b
2
1
=1(a1>b1>0)与双曲线
x2
a
2
2
-
y2
b
2
2
=1(b2>0)有公共焦点F1(-
13
,0),F2
13
,0),且椭圆的长轴长比双曲线的实轴长大8,离心率之比为3:7,求椭圆和双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x2+2x,若存在实数a,b(0<a<b),使f(x)在[a,b]上的值域是[
1
b
1
a
].则b-a的最小值是(  )
A、
1-
5
2
B、
5
-1
2
C、
-3+
5
2
D、
3+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等比数列,a4+a7=2,a5a6=-8,
(1)求an
(2)在单调递减的等差数列{bn}中,已知b2=a4,b5=a7求数列{|bn|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,点M(1,2)为双曲线C 右支上一点,且F2在以线段MF1为直径的圆的圆周上,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0.
(1)若直线l与圆C没有公共点,求m的取值范围;
(2)若直线l与圆C相交于P、Q两点,O为原点,且以PQ为直径的圆过原点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=sin2x的图象为C,问:需要经过怎样的平移变换得到函数y=cos(2x-
7
4
π)的图象C,并使平移的路程最短?

查看答案和解析>>

同步练习册答案