精英家教网 > 高中数学 > 题目详情

如图:已知常数,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点,建立如图坐标系,求P点的轨迹方程。

 

 

 

 

解析: 按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)。

由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak)。

直线OF的方程为:                  ①

直线GE的方程为:             ②

从①,②消去参数k,

得点P(x,y)坐标满足方程,(矩形内部)

练习册系列答案
相关习题

科目:高中数学 来源:江苏省丹阳市08-09学年高二下学期期末测试(理) 题型:解答题

 (本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)

A.(选修4-1:几何证明选讲)

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PBAC于点E,交⊙O于点D,若PEPAPD=1,BD=8,求线段BC的长.

 

 

 

 

 

 

B.(选修4-2:矩阵与变换)

在直角坐标系中,已知椭圆,矩阵阵,求在矩阵作用下变换所得到的图形的面积.

C.(选修4-4:坐标系与参数方程)

直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.

D.(选修4-5:不等式选讲)

,求证:.

 

 

 

 

 

查看答案和解析>>

同步练习册答案