精英家教网 > 高中数学 > 题目详情
三棱锥的高为3,侧棱长均相等且为,底面是等边三角形,则这个三棱锥的体积为(   )
A.B.C.D.
D

试题分析:由题意知为正三棱锥,高为3,侧棱长为,因此底面三角形的边长为3,所以该三棱锥的体积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知矩形是圆柱体的轴截面,分别是下底面圆和上底面圆的圆心,母线长与底面圆的直径长之比为,且该圆柱体的体积为,如图所示.

(1)求圆柱体的侧面积的值;
(2)若是半圆弧的中点,点在半径上,且,异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。

(1)求证:CE∥平面PAB;
(2)求四面体PACE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知多面体中, 四边形为矩形,,平面平面分别为的中点,且.

(1)求证:平面
(2)求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求 的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).

(1)求证:EF⊥A′C;
(2)求三棱锥FA′BC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方形ABCD的边长为2,E、F分别为BC、DC的中点,沿AE、EF、AF折成一个四面体,使B、C、D三点重合,则这个四面体的体积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P -ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.

(1)求四棱锥的体积.
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,图(2)中实线围成的部分是长方体(图(1))的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点.它落在长方体的平面展开图内的概率是,则此长方体的体积是________.

查看答案和解析>>

同步练习册答案