精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)当数学公式时,利用函数单调性的定义判断并证明f(x)的单调性,并求其值域;
(Ⅱ)若对任意x∈[1,+∞),f(x)>0,求实数a的取值范围.

解:(Ⅰ)任取x1,x2∈[1,+∞),且x1<x2
则△x=x2-x1>0,=,…

∵1≤x1<x2,∴,恒成立
∴△y>0,
∴f(x)在[1,+∞)上是增函数,
∴当x=1时,f(x)取得最小值为
∴f(x)的值域为
(Ⅱ)
∵对任意,恒成立
∴只需对任意x∈[1,+∞),x2+2x+a>0恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),
∵g(x)的对称轴为x=-1,∴只需g(1)>0便可,g(1)=3+a>0,
∴a>-3.
分析:(I)利用函数单调性的定义,设1≤x1<x2,利用作差法比较f(x1)与f(x2)的大小,进而证明函数f(x)为单调减函数,再利用单调性求函数最值即可;
(II)根据题意:“对任意恒成立”转化为“只需对任意x∈[1,+∞),x2+2x+a>0恒成立”.再设g(x)=x2+2x+a,x∈[1,+∞),利用二次函数的性质求出最小值,即可得到实数a的取值范围.
点评:本题主要考查了函数单调性的定义,利用定义证明函数的单调性的方法和步骤,作差法比较大小,代数变形能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年重庆市五区高三学业调研抽测1理科数学试卷(解析版) 题型:选择题

已知函数,且,则当时, 的取值范围是 ( )

A B C D

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省高三第三次考试理科数学卷 题型:解答题

(本题满分12分)已知函数 

(I)当时,求函数的极值;

(II)若函数在区间上是单调增函数,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省莱芜市高三上学期期末考试数学文卷 题型:解答题

(本小题满分14分)

  已知函数

(1)当时,求函数的单调递增区间;

(2)是否存在,使得对任意的都有,若存在,求 的范围;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一12月月考数学试卷 题型:解答题

(本题满分16分)已知函数

(1)当时,求函数的最大值;

(2)对于区间上的任意一个,都有成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河北省2010年高三一模模拟(三)数学文 题型:解答题

(本题满分12分)

已知函数

   (1)当时,求函数的极小值;

   (2)试讨论函数零点的个数。

 

查看答案和解析>>

同步练习册答案