精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)={log_{2a}}x(a>0,a≠\frac{1}{2})$,
(1)若f(x1x2…x2015)=8,求f(x12)+f(x22)+…+f(x20152)的值.
(2)若x∈(-1,0)时,求g(x)=f(x+1)>0,求a的取值范围.

分析 (1)运用对数的运算法则,计算化简即可得到所求值;
(2)由题意可得log2a(x+1)>0,由x的范围,结合对数函数的性质,即可得到a的范围.

解答 解:(1)若f(x1x2…x2015)=8,即有
log2a(x1x2…x2015)=8,即x1x2…x2015=(2a)8
则f(x12)+f(x22)+…+f(x20152)=log2ax12+log2ax22+…+log2ax20152
=log2a(x1x2…x20152=log2a(2a)16=16;
(2)g(x)=f(x+1)>0,即为log2a(x+1)>0,
由x∈(-1,0),可得x+1∈(0,1),
则0<2a<1,解得0<a<$\frac{1}{2}$.
即有a的取值范围是(0,$\frac{1}{2}$).

点评 本题考查对数的运算性质和对数函数的单调性,考查不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)的定义域是(1,2),则函数f(x+1)的定义域是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题P:函数y=loga(2x+1)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若p且?q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2016)=(  )
A.335B.336C.338D.2 016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x2-x-6≤0},集合B={x|x2+2x-3≤0},集合C={x|m+1≤x≤2m}
(1)若全集U=R,求A∪B,A∩B,(∁UA)∩(∁UB)
(2)若A∩C=C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a>1,b>1且ab-(a+b)=1,那么(  )
A.ab有最大值$2\sqrt{2}+1$B.ab有最小值${(\sqrt{2}+2)^2}$C.ab有最小值${(\sqrt{2}+1)^2}$D.ab有最大值$2(\sqrt{2}+1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=f(x)在R上为偶函数且在[0,+∞)上单调递增.若f(t)>f(2-t),则实数t的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.$(\frac{2}{3},2)$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x∈[-1,2],x2-2x-a≤0”为真命题,则实数a的取值范围是(  )
A.a≥3B.a≤3C.a≥0D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A,B,C是△ABC的内角,给出下列五个等式:
①sin2(A+B)+cos2C=1;
②sin(A+B)-sinC=0;
③cos(A+B)+cosC=0;
④sin$\frac{π-A}{4}$=cos$\frac{π+A}{4}$;
⑤tan$\frac{A+B}{2}$•tan$\frac{C}{2}$=1.
其中正确的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案