精英家教网 > 高中数学 > 题目详情
在直角坐标系中,四边形OPQR的顶点按逆时针顺序依次为O(0,0)、P(1,t)、Q(1-2t,2+t)、R(-2t,2),其中t∈(0,+∞),试判断四边形OPQR的形状,并给出证明.
考点:直线的一般式方程与直线的垂直关系,直线的一般式方程与直线的平行关系
专题:直线与圆
分析:利用直线平行与垂直的条件及斜率公式可得kOP=kQR,kOR=kPQ,又kOP•kPQ=-1,即可得出结论.
解答: 解:∵O(0,0)、P(1,t)、Q(1-2t,2+t)、R(-2t,2),
∴由斜率公式得kOP=
t-0
1-0
=t,kQR=
2-(2+t)
-2t-(1-2t)
=
-t
-1
=t,kOR=
2-0
-2t-0
=-
1
t
,kPQ=
2+t-t
1-2t-1
=-
1
t

∴kOP=kQR,kOR=kPQ,从而OP∥QR,OR∥PQ.∴四边形OPQR为平行四边形. 
又kOP•kPQ=-1,∴OP⊥PQ.
∴四边形OPQR为矩形.
点评:本题主要考查直线的斜率公式及直线平行垂直的判断方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前项n和sn=n2+4n(n∈N*),数列{bn}为等比数列,首项b1=2,公比为q(q>0),且满足b2,b3+4q,b4成等差数列.
(1)求数列{an},{bn}的通项公式;
(2)设cn=
3(an-3)•bn
4
,记数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-EFGH的棱长为a,点P在AC上,点Q在BG上,AP=BQ=a,求证:PQ⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

由1、2、3、4、5、6、7、9组成的没有重复数字且1、3都不与5相邻的八位数的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列关于命题的说法正确的有
 
(请填写相应的序号):
(1)原命题的否命题与逆命题的真假相同;
(2)命题“△ABC中,若A=B,则sin2A=sin2B”的逆命题是真命题;
(3)命题“x∈R,使x2-x-1<0成立”的否定是真命题;
(4)命题“若函数y=lg(ax2-2x+1)的值域为R,则实数a的取值范围是(0,1]”的逆否命题是假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1>1,前n项和为Sn,若
lim
n→∞
Sn=
1
a1
,那么a1的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平行四边形ABCD中,AB=4,AD=2,E,F分别是BC,CD的中点,且
DE
BF
=-15,则∠ABC=(  )
A、
π
3
B、
π
6
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在[1-2a,2-a]上的偶函数f(x),当x≥0时,f(x)=x+ex,若f(t)<f(2t-1).则t的取值范围是(  )
A、[-1,1]
B、[0,1]
C、[
1
2
,1]
D、[0,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
cos2x+1,1),
b
=(1,
3
2
sinx•cosx).
(1)若y=
a
b
,求y的周期;
(2)若x∈[-
π
6
π
4
],求y的最值,并求出y取得最值时x的值.

查看答案和解析>>

同步练习册答案