精英家教网 > 高中数学 > 题目详情
如图,CD是△ABC中AB边上的高,以AD为直径的圆交AC于点E,一BD为直径的圆交BC于点F.
(Ⅰ)求证:E、D、F、C四点共圆;
(Ⅱ)若BD=5,CF=
16
3
,求四边形EDFC外接圆的半径.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(Ⅰ)利用AD,BD是直径,可得∠AED=∠BFD=90°,再证明∠DEC+∠DFC=180°,即可证明:E、D、F、C四点共圆;
(Ⅱ)确定BD是四边形EDFC外接圆的切线,求出BD,同理求出CD,即可求四边形EDFC外接圆的半径.
解答: (Ⅰ)证明:连接ED,FD,
∵AD,BD是直径,∴∠AED=∠BFD=90°,
∴∠DEC=∠DFC=90°,
∴∠DEC+∠DFC=180°,
∴E、D、F、C四点共圆;
(Ⅱ)解:∵∠DEC=90°,
∴CD是四边形EDFC外接圆的直径,
∵CD是△ABC中AB边上的高,
∴BD是四边形EDFC外接圆的切线,
∴BD=BF•BC
∵BD=5,CF=
16
3

∴BF=3,
同理CD=
20
3

∴四边形EDFC外接圆的半径为
10
3
点评:本题考查与圆有关的比例线段,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数fn(x)=
x2-2x-a
enx
,其中n∈N*,a∈R,e是自然对数的底数.
(Ⅰ)求函数g(x)=f1(x)-f2(x)的零点;
(Ⅱ)若对任意n∈N*,fn(x)均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3和a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)当
s1
1
+
s2
2
+
s3
3
+…+
sn
n
最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足下列条件:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)具有性质M;反之,若x0不存在,则称函数f(x)不具有性质M.
(1)证明:函数f(x)=3x具有性质M,并求出对应的x0的值;
(2)已知函数h(x)=lg
a
x2+1
具有性质M,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式对?x∈R,ax2-ax+1>0恒成立,若命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+2x,(x<0)
0,(x=0)
-x2+2x,(x>0)

(1)画出函数f(x)图象;
(2)求函数f(x)在区间[-2,2]上的最大值和最小值;
(3)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是互相垂直的两个单位向量,若向量
a
=t•
e1
+
e2
与向量
b
=
e1
+t•
e2
是的夹角是钝角,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-1)=1,对任意x∈R,f'(x)>3,则f(x)>3x+4的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sin4x+cos4x是(  )
A、最小正周期为
π
2
,值域为[
2
2
,1]的函数
B、最小正周期为
π
4
,值域为[
2
2
,1]的函数
C、最小正周期为
π
2
,值域为[
1
2
,1]的函数
D、最小正周期为
π
4
,值域为[
1
2
,1]的函数

查看答案和解析>>

同步练习册答案