精英家教网 > 高中数学 > 题目详情
已知二次函数y=g(x)的图象经过点O(0,0)、A(m,0)与点P(m+1,m+1),设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值,其中m>n>0,b<a.
(1)求g(x)的二次项系数k的值;
(2)比较a,b,m,n的大小(要求按从小到大排列);
(3)若m+n≤2,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).
(1)由题意可设g(x)=kx(x-m),k≠0,
又函数图象经过点P(m+1,m+1),则m+1=k(m+1)(m+1-m),得k=1.…(2分)
(2)由(1)可得y=g(x)=x(x-m)=x2-mx.
所以f(x)=(x-n)g(x)=x(x-m)(x-n)=x3-(m+n)x2+mnx,
f′(x)=3x2-2(m+n)x+mn,…(4分)
函数f(x)在x=a和x=b处取到极值,
故f′(a)=0,f′(b)=0,…(5分)
∵m>n>0,
∴f′(m)=3m2-2(m+n)m+mn=m2-mn=m(m-n)>0…(7分)
f′(n)=3n2-2(m+n)n+mn=n2-mn=n(n-m)<0
又b<a,故b<n<a<m.                                 …(8分)
(3)设切点Q(x0,y0),则切线的斜率k=f/(x0)=3x02-2(m+n)x0+mn
y0=x03-(m+n)x02+mnx0,所以切线的方程是y-x03+(m+n)x02-mnx0=[3x02-2(m+n)x0+mn](x-x0)…(9分)
又切线过原点,故-x03+(m+n)x02-mnx0=-3x03+2(m+n)x02-mnx0
所以2x03-(m+n)x02=0,解得x0=0,或x0=
m+n
2
.  …(10分)
两条切线的斜率为k1=f/(0)=mnk2=f/(
m+n
2
)

m+n≤2
2
,得(m+n)2≤8,
-
1
4
(m+n)2≥-2

k2=f/(
m+n
2
)=
3(m+n)2
4
-2(m+n)×
m+n
2
+mn=-
1
4
(m+n)2+mn≥mn-2

…(12分)
所以k1k2≥mn(mn-2)=(mn)2-2mn=(mn-1)2-1≥-1
又两条切线垂直,故k1k2=-1,所以上式等号成立,有m+n=2
2
,且mn=1.
所以f(x)=x3-(m+n)x2+mnx=x3-2
2
 x2+x
.              …(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x
.若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•惠州模拟)已知二次函数y=g(x)的图象经过点O(0,0)、A(m,0)与点P(m+1,m+1),设函数f(x)=(x-n)g(x)在x=a和x=b处取到极值,其中m>n>0,b<a.
(1)求g(x)的二次项系数k的值;
(2)比较a,b,m,n的大小(要求按从小到大排列);
(3)若m+n≤2,且过原点存在两条互相垂直的直线与曲线y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)在(-∞,1)上单调递减,(1,+∞)上单调递增,最小值为m-1(m≠0),且y=g(x)的导函数的图象与直线y=2x平行,设f(x)=
g(x)
x

(Ⅰ)若曲线y=f(x)上的点P到点Q(0,-2)的距离的最小值为
2
,求m的值;
(Ⅱ)若m=1,方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三个不同的实数解,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)在(-∞,1)上单调递减,(1,+∞)上单调递增,最小值为m-1(m≠0),且y=g(x)的导函数的图象与直线y=2x平行,设f(x)=
g(x)
x

(Ⅰ)若曲线y=f(x)上的点P到点Q(0,-2)的距离的最小值为
2
,求m的值;
(Ⅱ)若m=1,方程f(2x)-k•2x=0在x∈[-1,1]上有实数解,求实数k的范围.

查看答案和解析>>

同步练习册答案