精英家教网 > 高中数学 > 题目详情
如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是( )

A.
B.
C.12
D.24
【答案】分析:本题在二面角背景下求三角形的面积,需要借助直二面角的相关知识研究三角形的几何特征,再由面积公式求出面积,由题设条件知两个直角三角形△PAD与△PBC是相似的直角三角形,根据题设条件可得出PB=2PA,作PD⊥AB,垂足为D,令AD=t,将三角形的面积用t表示出来,再研究面积的最值选出正确选项.
解答:解:由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,
∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,∴△PAD∽△PBC,又AD=4,BC=8,∴PB=2PA.
作PM⊥AB,垂足为M,则PM⊥β,令AM=t∈R,在两个Rt△PAM与Rt△PBM中,AM是公共边及PB=2PA,∴PA2-t2=4PA2-(6-t)2 ,解得PA2=12-4t.
∴PM=,即此四棱锥的高等于
∴S=×AB×PM=×6×=3≤12.
即三角形面积的最大值为12,
故选C.
点评:本题考查与二面角有关的立体几何综合题,解答本题,关键是将由题设条件得出三角形的性质、:两邻边的值有2倍的关系,第三边长度为6,引入一个变量,将面积表示成此变量的函数,从而利用函数的最值来研究面积的最值,本题考查了函数最值的思想,转化的思想,数形结合的思想,本题解题过程中将几何问题转化为代数问题求解是几何问题中求最值的常规思想,在近几年的高考中此类题多有出现,本题易因为没有能建立起面积的函数而导致解题失败.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A、D∈α,C、F∈γ,
AC∩β=B,DF∩β=E.
(1)求证:
AB
BC
=
DE
EF

(2)设AF交β于M,AC≠DF,α与β间距离为h′,α与γ间距离为h,当
h′
h
的值是多少时,△BEM的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知平面α∩平面β=MN,A∈α,B∈β,C∈MN且∠ACM=60°,∠BCN=45°,二面角A-MN-B=60°,AC=2.
(Ⅰ)求点A到平面β的距离;
(Ⅱ)设二面角A-BC-M的大小为θ,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4.
(Ⅰ)求证:B1O⊥平面AEO;
(Ⅱ)求二面角B1-AE-O的余弦值;
(Ⅲ)求三棱锥A-B1OE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若PQ⊥平面QBC,求CQ与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)如图,已知平面AEMN丄平面ABCD,四边形AEMN为 正方形,四边形ABCD为直角梯形,AB∥CD,∠ABC=90°,BC=CD=2AB=2,E 为 CD 的中点.
(I )求证:MC∥平面BDN;
(II)求多面体ABDN的体积.

查看答案和解析>>

同步练习册答案