(本小题满分14分)
已知双曲线
:
和圆
:
(其中原点
为圆心),过双曲线
上一点
引圆
的两条切线,切点分别为
、
.
(1)若双曲线
上存在点
,使得
,求双曲线离心率
的取值范围;
(2)求直线
的方程;
(3)求三角形
面积的最大值.
解:(1)因为
,所以
,所以![]()
.…………………1分
由
及圆的性质,可知四边形
是正方形,所以
.
因为
,所以
,所以![]()
.……………3分
故双曲线离心率
的取值范围为
.…………………………………………………………4分
(2)方法1:因为
,
所以以点
为圆心,
为半径的圆
的方程为
.………5分
因为圆
与圆
两圆的公共弦所在的直线即为直线
,……………………………………………6分
所以联立方程组
………………………………………………7分
消去
,
,即得直线
的方程为
.………………………………………………8分
方法2:设![]()
,已知点
,
则![]()
,![]()
.
因为
,所以
,即
.…………………………………………5分
整理得
.
因为
,所以
.……………………………………………………………6分
因为
,
,根据平面几何知识可知,
.
因为
,所以
.………………………………………………………………………7分
所以直线
方程为
.
即
.
所以直线
的方程为
.………………………………………………………………8分
方法3:设
,已知点
,
则![]()
,![]()
.
因为
,所以
,即
.…………………………………………5分
整理得
.
因为
,所以
.……6分![]()
这说明点
在直线
上. …………7分
同理点
也在直线
上.
所以
就是直线
的方程. ……8分
(3)由(2)知,直线
的方程为
,
所以点
到直线
的距离为
.
因为
,
所以三角形
的面积
.……………………………………10分
以下给出求三角形
的面积
的三种方法:
方法1:因为点
在双曲线
上,
所以
,即![]()
.
设
,
所以
.…………………………………………11分
因为
,
所以当
时,
,当
时,
.
所以
在
上单调递增,在
上单调递减.……………………………………12分
当
,即
时,
,…………………………………13分
当
,即
时,
.
综上可知,当
时,
;当
时,
. 14分
方法2:设
,则
.…………………………11分
因为点
在双曲线
上,即
,即![]()
.
所以
.
令
,则
.
所以当
时,
,当
时,
.
所以
在
上单调递减,在
上单调递增.………12分
当
,即
时,
,………13分
当
,即
时,
.
综上可知,当
时,
;当
时,
.………14分
方法3:设
,则
.…………11分
因为点
在双曲线
上,即
,即![]()
.
所以
.
令
,
所以
在
上单调递增,在
上单调递减.………………………………12分
因为
,所以
,
当
,即
时,
,此时
.……13分
当
,即
时,
,此时
.
综上可知,当
时,
;当
时,
.…
【解析】略
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com