精英家教网 > 高中数学 > 题目详情
直线与抛物线所围成的图形面积是(     )
A.20B.C.D.
C

试题分析:由定积分的几何意义,直线与抛物线所围成的图形面积是,故选C。
点评:简单题,利用定积分的几何意义,将面积计算问题转化成定积分计算。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果方程表示焦点在y轴上的椭圆,则实数k的取值范围是(   )
A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的两个焦点,是以(为坐标原点)为圆心,为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线 :y="m" 和: y=(m>0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为
A.           B.        C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别为椭圆的上、下焦点,其中也是抛物线的焦点,点在第二象限的交点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆,过点的动直线与圆相交于不同的两点,在线段取一点,满足:)。
求证:点总在某定直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,椭圆左右焦点分别为,上顶点为为等边三角形.定义椭圆C上的点的“伴随点”为.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆CAB两点,若点AB的“伴随点”分别是PQ,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案