精英家教网 > 高中数学 > 题目详情

,则值为

A. B. C. D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,函数$f(x)=\sqrt{x-3}+lg({10-x})$的定义域为集合A,集合B={x|5≤x<7}
(1)求集合A;         
(2)求(∁UB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=3x的值域为(  )
A.(0,+∞)B.[1,+∞)C.(0,1]D.(0,3]

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:解答题

设向量,函数.求函数的最小正周期与最大值.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:填空题

已知,,如果,则________

查看答案和解析>>

科目:高中数学 来源:2015-2016学年陕西省高一下学期期末考数学试卷(解析版) 题型:选择题

甲、乙两人在相同的条件下各射靶10次,他们的环数的方差分别为: ,则射击稳定程度是

A.甲高 B.乙高 C.两人一样高 D.不能确定

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江西省南昌市高二文下学期期末考试数学试卷(解析版) 题型:填空题

已知命题函数在定义域上单调递增;命题不等式对任意实数恒成立.若是真命题,则实数的取值范围为_____________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.从装有n个球(其中n-1个白球,1个黑球)的口袋中取出m个球(0<m≤n-1,m,n∈N*),共有$C_n^m$种取法.在这$C_n^m$种取法中,可以分成两类:一类是取出的m个球全部为白球,一类是取出的m个球中白球m-1个,则共有$C_1^0•C_{n-1}^m+C_1^1•C_{n-1}^{m-1}=C_1^0•C_n^m$,即有等式:$C_{n-1}^m+C_{n-1}^{m-1}=C_n^m({0<m≤n-1,m,n∈{N^*}})$成立.试根据上述思想化简下列式子:C${\;}_{n}^{m}$+C${\;}_{k}^{1}$.C${\;}_{n}^{m-1}$+C${\;}_{k}^{2}$.C${\;}_{n}^{m-2}$+…+C${\;}_{k}^{k}$.C${\;}_{n}^{m-k}$=${C}_{n+k}^{m}$.(1≤k<m≤n,k,m,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列四个命题:
①命题“?x∈R,cosx>0”的否定是“?x∈R,cosx<0”;
②若y=f(x)是奇函数,则y=|f(x)|的图象关于y轴对称;
③函数f(x)=log2(1-3x)的值域为(-∞,0)
④对任意实数x,有f(-x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0
⑤若函数f(x)对任意x∈R满足f(x)•f(x+4)=1,则8是函数f(x)的一个周期;
其中的真命题是②③④⑤.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案