精英家教网 > 高中数学 > 题目详情
15.求值:
(1)cos21°+cos22°+…+cos289°
(2)lg(tan25°•tan26°•tan64°•tan65°).

分析 根据对数的运算性质和同角的三角函数的关系即可判断.

解答 解:(1)cos21°+cos22°+…+cos289°=cos21°+cos22°+…+cos244°+cos245°+sin244°+…+sin22°+sin21°=44+$\frac{1}{2}$=$\frac{89}{2}$,
(2)lg(tan25°•tan26°•tan64°•tan65°)=lg(tan25°•tan26°•$\frac{1}{tan2{6}^{°}}$•$\frac{1}{tan3{5}^{°}}$)=lg1=0.

点评 本题考查了同角的三角函数的关系以及对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.定义在R上的函数f(x)既是偶函数又是周期函数,若的最小正周期是π,且当x∈(0,$\frac{π}{2}$)时,f(x)=sinx,则$f({\frac{2015}{3}π})$=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M:(x-m)2+y2=1的切线l,当l的方程为y=1时,直线l与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)相切,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆的标准方程;
(2)当m<0时,设S表示三角形的面积,若M的切线l:y=kx+$\sqrt{2}$与椭圆C交于不同的两点P,Q,当tan∠POQ=3S△POQ时,点A在抛物线y2=-2$\sqrt{2}$x上,点B在圆M上,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的向量,$\overrightarrow{AB}$=2$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{BC}$=-$\overrightarrow{a}$+8$\overrightarrow{b}$,$\overrightarrow{CD}$=3($\overrightarrow{a}$-$\overrightarrow{b}$),则A,B,C、D四点中共线的三点是A、B、D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知:$\overrightarrow{AB}$=3($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),$\overrightarrow{BC}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,则下列关系一定成立的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.C,A,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知全集U=R,集合A={x|x<2},B={x|lg(x-1)>0},则A∩(∁UB)=(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知O为坐标原点,$\overrightarrow{a}$=(-1,1),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,当△AOB为等边三角形时,|$\overrightarrow{AB}$|的值是(  )
A.$\frac{2\sqrt{6}}{9}$B.$\frac{4\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一群人中,37.5%的人为A型血,20.9%的人为B型血,33.7%的人为O型血,7.9%的人为AB型血,已知能允许输血的血型配对如下表,现在这群人中任选1人为输血者,再选1人为受血者,问:输血能成功的概率是多少?(注:“+”表示允许输血,“/”表示不允许输血)
 输血者/受血者 A型 B型 AB型 O型
 A型+//+
 B型/+/+
 AB型++++
 O型///+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sinωx-2$\sqrt{3}$sin2$\frac{ωx}{2}$+$\sqrt{3}$(ω>0),其图象与x轴的相邻两个交点的距离为$\frac{π}{2}$,则f(x)在区间[0,$\frac{π}{2}$]上的最小值为(  )
A.-2B.2C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

同步练习册答案