精英家教网 > 高中数学 > 题目详情
(2012•株洲模拟)函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,则
1
m
+
2
n
的最小值为
3+2
2
3+2
2
分析:由于函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),再由点A在直线mx+ny+1=0上,可得m+n=1,根据
1
m
+
2
n
=1+
n
m
+
2m
n
+2 利用基本不等式求出
它的最小值.
解答:解:由于函数y=logax经过定点(1,0),故函数y=loga(x+2)-1(a>0,a≠1)的图象恒过定点A(-1,-1),
再由点A在直线mx+ny+1=0上,可得-m-n+1=0,m+n=1.
1
m
+
2
n
=
m+n
m
+
2m+2n
n
=1+
n
m
+
2m
n
+2≥3+2
2
,当且仅当
n
m
2m
n
,即 n=
2
m 时,等号成立.
1
m
+
2
n
的最小值为 3+2
2

故答案为 3+2
2
点评:本题主要考查对数函数的单调性和特殊点,基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•株洲模拟)在直角坐标系xOy中,以坐标原点O为圆心的圆与直线:x-
3
y=4
相切.
(1)求圆O的方程;
(2)若圆O上有两点M、N关于直线x+2y=0对称,且|MN|=2
3
,求直线MN的方程;
(3)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)设x0是函数f(x)=(
1
3
)x-log2x
的零点.若0<a<x0,则f(a)的值满足(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,则?等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•株洲模拟)已知ABCD-A1B1C1D1为单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是AA1→A1D1→…,黑蚂蚁爬行的路线是AB→BB1→…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是
2
2

查看答案和解析>>

同步练习册答案