精英家教网 > 高中数学 > 题目详情
对b>a>0,取第一象限的点Ak(xk,yk)(k=1,2,…,n),使a,x1,x2,…,xn,b成等差数列,且a,y1,y2,…,yn,b成等比数列,则点A1,A2,…,An与射线L:y=x(x>0)的关系为(  )
分析:先由等差数列的通项公式,求出xk=
k(b-a)
n+1
,再由等比数列的通项公式,求出yk=a(
b
a
)
k
n+1
,最后作差即可证明各点均在射线L的下方
解答:解:依题意,设数列{xn}的公差为d,由b=a+(n+1)d,得d=
b-a
n+1

∴xk=a+kd=a+
k(b-a)
n+1

设数列{yn}的公比为q,由b=aqn+1,得
∴yk=aqk=a(
b
a
)
k
n+1

∵yk-xk=a(
b
a
)
k
n+1
-a-
k(b-a)
n+1
<0
∴各点Ak均在射线L:y=x(x>0)的下方
故选C
点评:本题考查了等差数列、等比数列的定义和通项公式,解题时要特别注意数列的项数,熟练运用公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)

第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州中学高三(上)调研数学试卷(解析版) 题型:解答题

对于函数f(x),g(x),h(x),如果存在实数a,b,使得h(x)=af(x)+bg(x),那么称h(x)为f(x),g(x)的线性生成函数.
(1)给出如下两组函数,试判断h(x)是否分别为f(x),g(x)的线性生成函数,并说明理由.
第一组:
第二组:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的线性生成函数为h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求实数t的取值范围;
(3)已知的线性生成函数h(x),其中a>0,b>0.若h(x)≥b对a∈[1,2]恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖南卷解析版) 题型:解答题

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

科目:高中数学 来源:2010年上海市上海中学高三数学综合练习试卷(3)(解析版) 题型:选择题

对b>a>0,取第一象限的点Ak(xk,yk)(k=1,2,…,n),使a,x1,x2,…,xn,b成等差数列,且a,y1,y2,…,yn,b成等比数列,则点A1,A2,…,An与射线L:y=x(x>0)的关系为( )
A.各点均在射线L的上方
B.各点均在射线L的上面
C.各点均在射线L的下方
D.不能确定

查看答案和解析>>

同步练习册答案