【题目】如图,三棱柱
的底面是等边三角形,
在底面ABC上的射影为
的重心G.
![]()
(1)已知
,证明:平面
平面
;
(2)若三棱柱
的侧棱与底面所成角的正切值为
,
,求点
到平面
的距离.
科目:高中数学 来源: 题型:
【题目】已知抛物线
的内接等边三角形
的面积为
(其中
为坐标原点).
(1)试求抛物线
的方程;
(2)已知点
两点在抛物线
上,
是以点
为直角顶点的直角三角形.
①求证:直线
恒过定点;
②过点
作直线
的垂线交
于点
,试求点
的轨迹方程,并说明其轨迹是何种曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,
轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线
的极坐标方程为
,直线
过点
倾斜角为
.
(1)将曲线
的极坐标方程化为直角坐标方程,并写出直线
的参数方程;
(2)当
时,直线
交曲线
于
,
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形
中,
,以
为折痕把
折起,使点
到达点
的位置,且
.
![]()
(1)证明:
平面
;
(2)若
为
的中点,二面角
等于60°,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,直线
:
,点
为
上一动点,过
作直线
,
为
的中垂线,
与
交于点
,设点
的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若过
的直线与Γ交于
两点,线段
的垂直平分线交
轴于点
,求
与
的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校周五的课程表设计中,要求安排8节课(上午4节下午4节),分别安排语文数学英语物理化学生物政治历史各一节,其中生物只能安排在第一节或最后一节,数学和英语在安排时必须相邻(注:上午的最后一节与下午的第一节不记作相邻),则周五的课程顺序的编排方法共有( ).
A.4800种B.2400种C.1200种D.240种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴,取相同长度单位建立极坐标系,直线
的极坐标方程为![]()
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)设直线
与
轴的交点为
,经过点
的动直线
与曲线
交于
,
两点,证明:
为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com