精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ,(a∈R)
(1)若f(x)在x=0处取得极值,确定a的值.
(2)若f(x)在R上为增函数,求a的取值范围.

【答案】
(1)解:函数f(x)=

可得f′(x)=

由f(x)在x=0处取得极值得f′(0)=0,解得a=1


(2)解:由(1)得f′(x)= ,因为f(x)在R上增函数,

∴f′(x)≥0恒成立,即cosx﹣sinx≥a恒成立,

sin( ﹣x)≥a恒成立,

∴a≤﹣


【解析】(1)求出函数的导数,利用函数的极值,转化求解a即可.(2)利用函数的单调性,推出不等式,然后求解a的范围即可.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在 中,内角 所对的边分别为 ,已知 .
(1)当 时,求 的面积;
(2)求 周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线l1:2x﹣y﹣1=0与直线l2:x+2y﹣3=0的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆C:(x﹣a)2+y2=8相交于P,Q两点,且 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(1,﹣2)和( ,0)在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是(
A.(
B.(
C.(
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x﹣y+1=0相交的弦长为2 ,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=4x的焦点为F,过点(0,3)的直线与抛物线交于A,B两点,线段AB的垂直平分线交x轴于点D,若|AF|+|BF|=6,则点D的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,角A、B、C的对边分别为a、b、c,若a2=b2+bc,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若对一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按右面的程序框图运行后,输出的S应为( )

A.26
B.35
C.40
D.57

查看答案和解析>>

同步练习册答案