精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=\frac{2}{x}+alnx-2(a>0)$,若对于?x∈(0,+∞)都有f(x)>2(a-1)成立,则实数a的取值范围为(0,$\frac{2}{e}$).

分析 求f′(x),根据导数的符号求出f(x)在(0,+∞)上的最小值,让最小值大于2(a-1),得到关于a的不等式,解该不等式,从而求出a的取值范围即可.

解答 解:f′(x)=$\frac{ax-2}{{x}^{2}}$,a>0;
∴x>$\frac{2}{a}$时,f′(x)>0,0<x<$\frac{2}{a}$时,f′(x)<0;
所以x=$\frac{2}{a}$时,f(x)取最小值f($\frac{2}{a}$)=a+aln$\frac{2}{a}$-2;
因为对于?x∈(0,+∞)都有f(x)>2(a-1)成立;
∴a+aln$\frac{2}{a}$-2>2(a-1);
∴aln$\frac{2}{a}$>a;
∴ln$\frac{2}{a}$>1,$\frac{2}{a}$>e;
∴0<a<$\frac{2}{e}$;
∴a的取值范围为(0,$\frac{2}{e}$),
故答案为:(0,$\frac{2}{e}$).

点评 考查通过求导数,根据导数的符号判断函数的单调性,以及根据导数符号求函数的最小值的方法,注意正确求导.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别为A,B,C的对边,且a2+b2=c2-ab,则C的大小是(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项均为正数,且a2=4,a3+a4=24.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=3,b2=6,且{bn-an}是等差数列,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=loga(8-3ax)在[-1,2]上单调减函数,则实数a的取值范围为1<a<$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知双曲线$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的离心率$\frac{3}{2}$,则该双曲线的虚半轴长b=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{2x-1}{x+2}≤3$的解集为(-∞,-7]∪(-2,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α是第二象限角,那么$\frac{α}{2}$和2α都不是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知动点P(x,y)在椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1上,F为椭圆C的右焦点,若点M满足|$\overrightarrow{MF}$|=1且$\overrightarrow{PM}$•$\overrightarrow{MF}$=0,则|$\overrightarrow{PM}$|的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设${y_1}={a^{3x-1}},{y_2}={a^{1-2x}}$,其中a>0,a≠1,确定x为何值时,有
(1)y1=y2
(2)y1>y2

查看答案和解析>>

同步练习册答案