精英家教网 > 高中数学 > 题目详情

(12分)如图,在四棱锥中,底面

的中点.

(Ⅰ)求和平面所成的角的大小;

(Ⅱ)证明平面

(Ⅲ)求二面角的正弦值.

 

【答案】

(Ⅰ)解:在四棱锥中,因底面平面,故

,从而平面.故在平面内的射影为,从而和平面所成的角.

中,,故

所以和平面所成的角的大小为

(Ⅱ)证明:在四棱锥中,

底面平面,故

由条件.又

,可得的中点,

.综上得平面

(Ⅲ)解:过点,垂足为,连结.由(Ⅱ)知,平面在平面内的射影是,则

因此是二面角的平面角.由已知,得.设,得

中,,则

.在中,

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年黑龙江高三上期末考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图,在四棱锥中,侧面是边长 为2的正三角形,且与底面垂直;底面是菱形,的中点.

 

(1)求四棱锥的体积;

(2)求证:平面

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学文卷 题型:解答题

(本小题满分12分)

如图,在四棱锥中,,平面平面是线段上一点,

(1)证明:平面

(2)设三棱锥与四棱锥的体积分别为,求的值.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省高三一模调研考试数学文卷 题型:解答题

(本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。

(1)求异面直线PA与BF所成角的正切值。

(2)求证:EF⊥平面PCD。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学文卷 题型:解答题

(本小题满分12分)

如图,在四棱锥中,,平面平面是线段上一点,

(1)证明:平面

(2)设三棱锥与四棱锥的体积分别为,求的值.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012届山东省高三上学期期末考试文科数学 题型:解答题

(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F。

(1)证明PA//平面EDB;

(2)证明PB⊥平面EFD;      

 

 

 

查看答案和解析>>

同步练习册答案