精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。

(1)求异面直线PA与BF所成角的正切值。

(2)求证:EF⊥平面PCD。

 

【答案】

解:(1)如图,连结AC

过点F作FO⊥AC,∴面PAC⊥面ABCD

∵PA⊥平面ABCD,∴平面PAC⊥AC,垂足为O,

连结BO,则FO⊥平面ABCD,且FO//PA。

∴∠BFO为异面直线PA与BF所成的角………………4分

在Rt△BOF中,OFPA=1,ks**5u

OB=,则tanBFO=………………6分

(2)连结OE、CE、PE。    ∵E是AB的中点,

∴OE⊥AB       又FO⊥平面ABCD,   ∴EF⊥AB。

∵AB//CD         ∴EF⊥CD

在Rt△PAE和Rt△CBE中,PA=CB,AE=BE,∴Rt△PAE≌Rt△CBE,

∴PE=CE…………………………10分

∴又F为PC的中点,      ∴EF⊥PC。

故EF⊥平面PCD。……………………12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案