精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\frac{a}{a-1}$(2x-2-x)(a>0,且a≠1).
(1)判断函数f(x)的奇偶性和单调性,并说明理由;
(2)当x∈(-1,1)时,总有f(m-1)+f(m)<0,求实数m的取值范围.

分析 (1)根据函数奇偶性和单调性的定义进行证明即可.
(2)根据函数奇偶性和单调性的关系将不等式进行转化求解即可.

解答 解:(1)∵f(-x)=$\frac{a}{a-1}$(2-x-2x)=-$\frac{a}{a-1}$(2x-2-x)=-f(x),
∴f(x)为奇函数.…(2分)
设x1<x2,f(x1)-f(x2)=$\frac{a}{a-1}$(${2}^{{x}_{1}}$-$\frac{1}{{2}^{{x}_{1}}}$-${2}^{{x}_{2}}$+$\frac{1}{{2}^{{x}_{2}}}$)=$\frac{a}{a-1}$(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)(1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$),
∵y=2x是增函数,∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,又1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$>0,
∴当0<a<1时,f(x1)-f(x2)>0,即f(x1)>f(x2),函数f(x)是减函数
当a>1时,f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)是增函数.…(6分)
(2)由f(m-1)+f(m)<0得f(m)<-f(m-1)
由(1)知f(x)为奇函数,∴f(m)<f(1-m) …(8分)
又由(1)得
当0<a<1时,函数f(x)是减函数
∴$\left\{\begin{array}{l}{m>1-m}\\{-1<m<1}\\{-1<1-m<1}\end{array}\right.$解得$\frac{1}{2}$<m<1 …(10分)
当a>1时,函数f(x)是增函数
∴$\left\{\begin{array}{l}{m<1-m}\\{-1<m<1}\\{-1<1-m<1}\end{array}\right.$,解得0<m<$\frac{1}{2}$.…(12分)

点评 本题主要考查函数奇偶性和单调性的判断和应用,利用函数奇偶性和单调性的定义进行证明和转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.为推动乒乓球运动的发展,由甲乙两乒乓球协会协商进行友谊赛,现有来自甲协会的运动员4名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名,从这9名运动员中随机选择4人参加比赛.
(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;
(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},则M∪N=(  )
A.{x|x≤3}B.{x|2<x<3}C.{x|-1≤x≤3}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=(  )
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线的焦点,∠MFx=60°且|FM|=4.
(Ⅰ)求抛物线C的方程;
(Ⅱ)已知点P在y轴正半轴,直线PF交抛物线C于A(x1,y1)、B(x2,y2)两点,其中y1>0,y2<0,试问$\frac{|PA|}{|AF|}$-$\frac{|PB|}{|BF|}$是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a、b、c分别是三内角A、B、C对应的三边,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.二项式${({{x^2}-\frac{1}{x}})^6}$的展开式中(  )
A.不含x9B.含x4C.含x2D.不含x项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(  )
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

同步练习册答案