精英家教网 > 高中数学 > 题目详情
1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

分析 先分别求出集合M和N,由此能求出M∩N.

解答 解:∵M={x|0<x<2},N={x|y=lg(x-1)}={x|x>1},
∴M∩N={x|1<x<2}.
故选:B.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=cos$\frac{x}{2}$的最小正周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{a}{a-1}$(2x-2-x)(a>0,且a≠1).
(1)判断函数f(x)的奇偶性和单调性,并说明理由;
(2)当x∈(-1,1)时,总有f(m-1)+f(m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.P是双曲线C:$\frac{x^2}{2}-{y^2}$=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为(  )
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,以A,B,C,D,E为顶点的六面体中,△ABC和△ABD均为正三角形,且平面ABC⊥平面ABD,EC⊥面ABC,EC=$\frac{{\sqrt{3}}}{2}$,AB=2.
(1)求证:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,出行健步不为难,次日脚疼减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一人走了378里路,第一天健步行走,从第二天起因脚疼每天走的路程为前一天的一半,走了6天后到达目的地.”问此人最后一天走了(  )
A.6里B.12里C.24里D.36里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知α,β∈(0,$\frac{π}{2}$),且tan(α-β)=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则α的值是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,给定由10个点(任意相邻两点距离为1,)组成的正三角形点阵,在其中任意取三个点,以这三个点为顶点构成的正三角形的个数是(  )
A.12B.13C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y2=20x的焦点到准线的距离是(  )
A.5B.10C.15D.20

查看答案和解析>>

同步练习册答案