精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),且函数f(x)与g(x)的图象在y轴上的截距相等.
(I)求a的值;
(II)求函数h(x)=f(x)+g(x)的单调递增区间.
分析:(I)由已知中函数f(x)与g(x)的图象在y轴上的截距相等,结合函数f(x)=|x-a|,g(x)=x2+2ax+1(a为正常数),我们可以构造关于a的方程,解方程可以求出a的值
(II)由(1)中结论,我们可以得到函数h(x)=f(x)+g(x)的解析式,利用零点分段法,我们可以将其转化为分段函数的形式,再由二次函数的性质,即可分析出函数的单调递增区间.
解答:解:(I)∵函数f(x)与g(x)的图象在y轴上的截距相等
∴f(0)=g(0),即|a|=1…(2分)
又a>0,所以a=1.           …(4分)
(II) 由(I)可知f(x)=|x-1|,g(x)=x2+2x+1…(6分)
h(x)=f( x )+g( x )=|x-1|+x2+2x+1=
(x+
1
2
)
2
+
7
4
,x<1
(x+
3
2
)
2
-
9
4
,x≥1
…(9分)
h(x)在[-
1
2
,1)和[1,+∞)上都是单调递增函数
.,…(11分)
又∵(1+
1
2
)2+
7
4
=(1+
3
2
)2-
9
4

h(x)在[-
1
2
,+∞)上是单调递增函数
.…(13分)
故h(x)的单调递增区间为[-
1
2
,+∞)
…(14分)
点评:本题考查的知识点是函数与方程的综合运用,函数的单调性及单调区间,零点分段法,二次函数的性质,其中利用零点分段法将函数的解析式化为分段函数的形式,进而转化为二次函数单调性的判断问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案