精英家教网 > 高中数学 > 题目详情
5.已知2sinθ=1+cosθ,则tanθ=(  )
A.$-\frac{4}{3}$或0B.$\frac{4}{3}$或0C.$-\frac{4}{3}$D.$\frac{4}{3}$

分析 利用同角三角函数的基本关系、二倍角的余弦公式,求得tanθ的值.

解答 解:∵2sinθ=1+cosθ,∴4sin$\frac{θ}{2}$cos$\frac{θ}{2}$=2${cos}^{2}\frac{θ}{2}$,∴cos$\frac{θ}{2}$=0 或2sin$\frac{θ}{2}$=cos$\frac{θ}{2}$,
即$\frac{θ}{2}$=kπ+$\frac{π}{2}$,k∈Z,或tan$\frac{θ}{2}$=$\frac{1}{2}$,即θ=2kπ+π,k∈Z,或tanθ=$\frac{2tan\frac{θ}{2}}{1{-tan}^{2}\frac{θ}{2}}$=$\frac{4}{3}$,
即 tanθ=0,或tanθ=$\frac{4}{3}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系、二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.“求方程($\frac{5}{13}$)x+($\frac{12}{13}$)x=1的解”,有如下解题思路:设f(x)=($\frac{5}{13}$)x+($\frac{12}{13}$)x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2,类比上述解题思路,不等式x6-(x+2)>(x+2)3-x2的解集是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:$\frac{x+2}{x-3}$≥0,q:x∈Z,若“p且q”与“¬q”同时为假命题,则x的取值集合为{-1,0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:“a=2”是q:“直线ax+3y-1=0与直线6x+4y-3=0垂直”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出下列四个命题:
①函数f(x)=loga(2x-1)-1的图象过定点(1,0);
②已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2-|x|;
③函数y=$\frac{1}{|x|-1}$的图象可由函数y=$\frac{1}{|x|}$图象向右平移一个单位得到;
④函数y=$\frac{1}{|x|-1}$图象上的点到(0,1)距离的最小值是$\sqrt{3}$.
其中所有正确命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在各项均为正数的等比数列{an}中,a2,a4+2,a5成等差数列,a1=2,则an=2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=x2-2ax+2(x∈[-1,1])的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c,\overrightarrow d$及实数x,y满足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow c=\overrightarrow a+({{x^2}-3})\overrightarrow b$,$\overrightarrow d=-y\overrightarrow a+x\overrightarrow b,\overrightarrow a⊥\vec b,\vec c⊥\vec d$,且$|{\vec c}|≤\sqrt{10}$.
(1)将y表示成x的函数y=f(x)并求定义域;
(2)$x∈({1,\sqrt{6}})$时,不等式f(x)≥mx-16恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线C的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦点分别是F1、F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0 ) (x0>0,y0>0)满足$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{P{F}_{1}}$=$\frac{{\overrightarrow{{F_2F}_1}•\overrightarrow{{MF}_1}}}{{{F_2F}_1}}$,则S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=(  )
A.-1B.1C.2D.4

查看答案和解析>>

同步练习册答案