精英家教网 > 高中数学 > 题目详情
(1)选修4-2:矩阵与变换
设曲线2x2+2xy+y2=1在矩阵A=(a>0)对应的变换作用下得到的曲线为x2+y2=1.
(Ⅰ)求实数a,b的值.
(Ⅱ)求A2的逆矩阵.
【答案】分析:(Ⅰ)确定点在矩阵A=(a>0)对应的变换作用下得到点坐标之间的关系,利用变换前后的方程,即可求得矩阵A;
(Ⅱ)先计算A2的值,求出行列式的值,即可得到A2的逆矩阵.
解答:解:(Ⅰ)设曲线2x2+2xy+y2=1上的点(x,y)在矩阵A=()(a>0)对应的变换作用下得到点(x′,y′)
则(=,∴
∵x′2+y′2=1
∴(ax)2+(bx+y)2=1
∴(a2+b2)x2+2bxy+y2=1
∵2x2+2xy+y2=1
∴a2+b2=2,2b=2
∴a=1,b=1
∴A=(
(Ⅱ)A2=()()=(),=1
∴A2的逆矩阵为
点评:本题考查矩阵与变换,考查逆矩阵的求法,确定变换前后坐标之间的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:江苏省丹阳市08-09学年高二下学期期末测试(理) 题型:解答题

 (本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)

A.(选修4-1:几何证明选讲)

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PBAC于点E,交⊙O于点D,若PEPAPD=1,BD=8,求线段BC的长.

 

 

 

 

 

 

B.(选修4-2:矩阵与变换)

在直角坐标系中,已知椭圆,矩阵阵,求在矩阵作用下变换所得到的图形的面积.

C.(选修4-4:坐标系与参数方程)

直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.

D.(选修4-5:不等式选讲)

,求证:.

 

 

 

 

 

查看答案和解析>>

同步练习册答案