精英家教网 > 高中数学 > 题目详情
19.关于不等式$\frac{4x+m}{x{\;}^{2}-2x+3}$<2对于任意的实数x恒成立,则实数m的取值范围是(  )
A.[-2,+∞)B.(-∞,-2)C.[-4,+∞)D.(0,-2)

分析 原不等式可化为4x+m<2(x2-2x+3)对于任意的实数恒成立,由二次函数的知识可得.

解答 解:配方可得x2-2x+3=(x-1)2+2≥2,
∴原不等式可化为4x+m<2(x2-2x+3)对于任意的实数恒成立,
整理可得2x2-8x+6-m>0对于任意的实数恒成立,
∴△=(-8)2-4×2×(6-m)<0,
解得m<-2,
故选:B.

点评 本题考查分式不等式,涉及恒成立和二次函数的知识,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知幂函数f(x)=x${\;}^{{m}^{2}-2m-3}$,m∈{m|-1<m<3,m∈Z},在区间(0,+∞)上是减函数,求f(x)的解析式并求其定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.抛物线y2=4x的焦点作倾角为60°的直线交抛物线与AB两点.问是否在抛物线上存在一点M,△ABM是以AB为斜边的Rt△,存在,求出点M 的坐标,不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+mx+n图象过点(1,3),且f(-1+x)=f(-x)对任意实数x都成立.
(1)求f(x)的解析式;
(2)设F(x)=tx2+8x-f(x).
①若关于x的方程F(x)=0的两根分别在区间(0,1)(2,3)内,求实数t的取值范围;
②设t≥1,求函数F(x)在闭区间[-1,1]上的最小值函数G(t)的表达式及其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x>0,y>0,求证:$\frac{y}{\sqrt{x}}-\sqrt{x}≥\sqrt{y}-\frac{x}{\sqrt{y}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.等腰直角三角形ABC中,斜边BC长为4$\sqrt{2}$,一个椭圆以C为其中一个焦点,另一焦点在线段AB上,且椭圆经过A,B两点,求该椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知f(x)是一次函数,其图象过点(1,4),且${∫}_{0}^{1}$f(x)dx=1,求f(x)的解析式;
(2)设f(x)=ax+b,且${∫}_{-1}^{1}$[f(x)]2dx=1,求f(a)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=|2x-4|在区间(k-1,k+1)内不单调,则实数k的取值范围是(  )
A.(-∞,1)B.(-1,1)C.(3,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{n}$=(y,cosx),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C所对的边,若f($\frac{B}{2}$)=3,且b=2,a+c=4,求△ABC的面积.

查看答案和解析>>

同步练习册答案