精英家教网 > 高中数学 > 题目详情

已知探照灯的轴截面是抛物线x=y2,如图所示,表示平行于对称轴y=0(即x轴)的光线于抛物线上的点P、Q的反射情况.设点P的纵坐标为a(a>0),则a取何值时,从入射点P到反射点Q的光线的路程PQ最短?

答案:
解析:

  解:由题设知P点的坐标为(a2,a),故直线PQ的方程为y=(x-),即4ax-(4a2-1)y-a=0.

  解方程组得y=或y=a.

  由此可知,Q点的坐标是(,-).

∴|PQ|=|PF|+|FQ|=a2(a>0).

  利用均值不等式.有|PQ|=(a2)+≥2=1.当且仅当a2,即a=时,上式等号成立.

  ∴入射点为(),反射点为(,-)时.路程PQ最短,这时P、Q恰好关于x轴对称,PQ为抛物线的通径.

  分析:光源置于抛物镜面的焦点处,光线经抛物镜面反射成一束平行光线射出,这是抛物线的光学性质,因此入射光线与反射光线成平行状态,那么光线PQ必过抛物线y2=x的焦点F(,0),于是可解.

  点评:本题利用抛物线的几何性质将买际问题转化为数学问题,然后又进一步运用抛物线的几何性质及不等式的性质求解.


练习册系列答案
相关习题

科目:高中数学 来源:全优设计选修数学-2-1苏教版 苏教版 题型:044

如图,已知探照灯的轴截面是抛物线y2=x,平行于对称轴y=0的光线于此抛物线上的入射点、反射点分别为P、Q.设点P的纵坐标为a(a>0),当a取何值时,从入射点P到反射点Q的光线路径最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某探照灯的轴截面是抛物线y2=x,如图所示,表示平行于对称轴y=0(即x轴)的光线与抛物线上的点P、Q的反射情况,设点P的纵坐标为a(a>0),a取何值时,从入射点P到反射点Q的光线路程PQ最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某探照灯的轴截面是抛物线,如图所示表示平行于对称轴(即轴)的光线在抛物线上的点的反射情况,设纵坐标为取何值时,从入射点到反射点的光线路程最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知探照灯的轴截面是抛物线y2=x,下图所示为平行于对称轴y=0(即x轴)的光线在抛物线上的点P、Q的反射情况,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.

查看答案和解析>>

同步练习册答案