精英家教网 > 高中数学 > 题目详情

已知函数数学公式(a>0且a≠1)是定义在(-∞,+∞)上的奇函数.
(1)求a的值; 
(2)当x∈(0,1]时,t•f(x)≥2x-2恒成立,求实数t的取值范围.

解:(1)∵函数(a>0且a≠1)是定义在(-∞,+∞)上的奇函数,
,解得a=2.
(2)由(1)得,当0<x≤1时,f(x)>0.
∴当0<x≤1时,t•f(x)≥2x-2恒成立,
则等价于对x∈(0,1]时恒成立,
令m=2x-1,0<m≤1,即当0<m≤1时恒成立,
在(0,1]上的最大值,易知在(0,1]上单调递增,
∴当m=1时有最大值1,所以t≥1,
故所求的t范围是:t≥1.
分析:(1)根据奇函数的性质,令f(0)=0列出方程,求出a的值;
(2)由0<x≤1判断出f(x)>0,再把t分离出来转化为对x∈(0,1]时恒成立,利用换元法:令m=2x-1,代入上式并求出m的范围,再转化为求在(0,1]上的最大值.
点评:本题考查了奇函数的性质应用,恒成立问题以及转化思想和分离常数法求参数范围,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年湖北省襄阳五中高三(上)周练数学试卷2(实验班)(8.13)(解析版) 题型:选择题

已知函数(a>0且a≠1),若x1≠x2,且f(x1)=f(x2),则x1+x2的值( )
A.恒小于2
B.恒大于2
C.恒等于2
D.与a相关

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省名校新高考研究联盟高三(下)5月联考数学试卷(文科)(解析版) 题型:选择题

已知函数(a>0且a≠1),若x1≠x2,且f(x1)=f(x2),则x1+x2的值( )
A.恒小于2
B.恒大于2
C.恒等于2
D.与a相关

查看答案和解析>>

科目:高中数学 来源:2010年北京四中高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数(a>0且a为常数).
(Ⅰ)当a=2时,求函数f(x)的单调区间;
(Ⅱ)若不等式对x∈[-,+∞)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本题满分14分)已知函数其中a>0,且a≠1,

(1)求函数的定义域;

(2)当0<a<1时,解关于x的不等式

(3)当a>1,且x∈[0,1)时,总有恒成立,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高一上学期期中考试数学试卷 题型:解答题

(12分) 已知函数=loga(a>0且a≠1)是奇函数

(1)求,(

(2)讨论在(1,+∞)上的单调性,并予以证明

 

查看答案和解析>>

同步练习册答案