精英家教网 > 高中数学 > 题目详情
10.关于x的方程x3+ax2+bx+c=0的三个实数根可作为一个椭圆、一个双曲线、一个抛物线的离心率,则$\frac{b-1}{a+1}$的取值范围是 (  )
A.(-2,0)B.(0,2)C.(-1,0)D.(0,1)

分析 依题意可知方程有一个根是1,进而可设x3+ax2+bx+c=0=(x-1)(x2+mx+n)根据多项式恒等的充要条件,的方程组,联立后可求得m和n,进而可构造函数f(x)=x2+mx+n,则可知f(x)=0的两个根x1,x2分别作为椭圆和双曲线的离心率,根据判别式大于0,令a为横轴,b为纵轴,建立平面直角坐标系,作出这三个不等式所对应的平面区域S,设P(a,b)是平面区域S内的任意一点,A(-1,1),则可知$\frac{b-1}{a+1}$的几何意义是直线的斜率,进而可求得范围.

解答 解:依题意,关于x的方程 x3+ax2+bx+c=0有一个根是1
所以可设x3+ax2+bx+c=0=(x-1)(x2+mx+n)
根据多项式恒等的充要条件,得
m-1=a①
n-m=b②
n+c=0③
取①②两式联立得
m=a+1,n=a+b+1
构造函数 f(x)=x2+mx+n 即 f(x)=x2+(a+1)x+(a+b+1)
依题意f(x)=0的两个根x1,x2分别作为椭圆和双曲线的离心率
故 0<x1<1<x2
根据一元二次方程根的分布,可得关于实系数a,b的约束条件:
判别式=(a+1)2-4(a+b+1)=(a-1)2-4b-4>0
f(0)=a+b+1>0,f(1)=2a+b+3<0
令a为横轴,b为纵轴,建立平面直角坐标系,作出这三个不等式所对应的平面区域S,
设P(a,b)是平面区域S内的任意一点,A(-1,1),k=$\frac{b-1}{a+1}$,则k的几何意义是直线PA的斜率.
作图,得-2<k<0
故选:A.

点评 本题主要考查了圆锥曲线的综合知识.涉及到了方程的根的分布,多项式恒等等知识,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.“$\sqrt{x}$>0”是“x>0”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.化简:$\frac{sin(180°-α)•sin(270°-α)•tan(90°-α)}{sin(90°+α)•tan(270°+α)•tan(360°-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平面四边形ABCD中,∠A=90°,∠B=135°,∠C=60°,AB=AD,M,N分别是边AD,CD上的点,且2AM=MD,2CN=ND.将△ABD沿对角线BD折起,使平面ABD⊥平面BCD,并连结AC,MN.(如图2)

(Ⅰ) 证明:MN∥平面ABC;
(Ⅱ) 证明:AD⊥BC;
(Ⅲ)求直线BM与平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3;这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么[log21]+[log22]+[log23]+[log24]+…+[log263]+[log264]+[log265]的值为270.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a=log32,b=ln2,c=5${\;}^{\frac{1}{2}}$,则a、b、c三个数的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设x>0,则方程x+$\frac{1}{x}$=2sinx的根的情况是(  )
A.有实根B.无实根C.恰有一实根D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.锐角三角形ABC中,$S=\frac{{c}^{2}-({a}^{2}-{b}^{2})}{4k}$,c既不为最大边也不为最小边,则k的取值范围是($\sqrt{2}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=1,|{\overrightarrow{AB}}|=\sqrt{3}$,则$\overrightarrow{OA}•\overrightarrow{OB}$=-$\frac{1}{2}$,$|{\overrightarrow{OA}+\overrightarrow{OB}}|$=1.

查看答案和解析>>

同步练习册答案