精英家教网 > 高中数学 > 题目详情
函数y=2 x2+1的值域是
[2,+∞)
[2,+∞)
分析:由x2+1=t≥1,再利用指数函数y=2t的单调性即可得出函数的值域.
解答:解:∵x2+1≥1,∴2x2+121
∴函数y=2 x2+1的值域是[2,+∞).
故答案为[2,+∞).
点评:熟练掌握指数函数的单调性是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
2-x
2+x
+
2x-2
的定义域为M,
(1)求M;
(2)当x∈M时,求函数f(x)=log2x•log2(x2)+a•log2x的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2-x
2+x
+lg(-x2+4x-3)
的定义域为M.
(1)求M;
(2)当x∈M时,求函数f(x)=a•2x+2+3•4x(a<-3)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2-x2+2x+8
(1)求函数的定义域;
(2)求函数的值域;
(3)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln x-
b
x
(b为实数)
(1)若b=-1,求函数f(x)的极值;
(2)若函数M(x)满足M(x)≥N(x)恒成立,则称M(x)是N(x)的一个“上界函数”.
①如果函数f(x)为g(x)=-Inx的一个“上界函数”,求b的取值范围;
②若b=0,函数F(x)的图象与函数f(x)的图象关于直线y=x对称,求证:当x∈(-2,+∞)时,函数F(x)是函数y=f(
x
2
+1)+
x
2
+1
的一个“上界函数”.

查看答案和解析>>

同步练习册答案