精英家教网 > 高中数学 > 题目详情
本题满分10分)
如图,已知求证:al.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?若存在,确定E点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.

(1)求证:BC⊥平面PAC.
(2)求证:PB⊥平面AEF.
(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=.

(I)求证BCSC; (II)求平面SBC与平面ABCD所成二面角的大小;
(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥平面.

(1)求证:平面平面
(2)当点到平面的距离为时,求二面角的余弦值;
(3)当为何值时,点在平面内的射影恰好是的重心.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、(本题12分)在正方体
求证:(1)对角线⊥平面
(2)与平面的交点H是的外心。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图1,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点.将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为(   )

A.90°            B.60°            C.45°         D.0°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,ABCDA1B1C1D1是长方体,OB1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是(     )
A.AMO三点共线B.AMOA1不共面
C.AMCO不共面 D.BB1OM共面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图,已知正方体的棱长为2,点分别为的中点.

(Ⅰ)求异面直线CM所成角的余弦值;
(Ⅱ)求点到平面的距离.

查看答案和解析>>

同步练习册答案