精英家教网 > 高中数学 > 题目详情
(2012•河东区一模)命题A:|x-1|<3,命题B:(x+2)(x+a)<0;若A是B的充分而不必要条件,则a的取值范围是(  )
分析:解不等式我们可以求出命题A与命题B中x的取值范围,然后根据“谁小谁充分,谁大谁必要”的原则,结合A是B的充分不必要条件,则A?B,将问题转化为一个集合关系问题,分析参数a的取值后,即可得到结论.
解答:解:由|x-1|<3,得-2<x<4,∴命题A:-2<x<4.
命题B:当a=2时,x∈φ,
当a<2时,-2<x<-a,
当a>2时,-a<x<-2.
∵A是B的充分而不必要条件,
∴命题B:当a<2时,-2<x<-a,
∴-a>4,
∴a<-4,
综上,当a<-4时,A是B的充分不必要条件,
故选A.
点评:本题考查的知识点是充要条件与集合之间的关系,其中根据“谁小谁充分,谁大谁必要”的原则,将充要条件问题转化为集合关系问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河东区一模)袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是
13

(1)求m,n的值;
(2)从袋中任意摸出2个球,设得到小球的编号数之和为ξ,求随机变量ξ的分布列和 数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河东区一模)已知二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河东区一模)如图,在△ABC中,AB=AC=4,BC=6,以AB为直径的圆交BC于点D,过点D作该圆的切线,交AC于点E,则CE=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河东区一模)已知a=5 log23.4,b=5 log43.6,c=(
1
5
 log30.3,则(  )

查看答案和解析>>

同步练习册答案