精英家教网 > 高中数学 > 题目详情
等差数列{an}中S5=25,S45=405.则S50=______.
∵S5=25,S45=405
∴5a1+
5×4
2
d
=25   ①
45a1+
45×44
2
d
=405   ②
由①②联立可得
a1=
23
5
,d=
1
5

s50=50×
23
5
+
50×49
2
× 
1
5
=475,
故答案为:475.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,当ar=as(r≠s)时,{an}必定是常数数列.然而在等比数列{an}中,对某些正整数r、s(r≠s),当ar=as时,非常数数列{an}的一个例子是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

公差不为0的等差数列{an}中,a1=2,a2是a1与a4的等比中项.
(I)求数列{an}的公差d;
(II)记数列{an}的前20项中的偶数项和为S,即S=a2+a4+a6+…+a20,求S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a8=8,则
S
 
15
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若am=p,an=q(m,n∈N*,n-m≥1),则am+n=
nq-mp
n-m
.类比上述结论,对于等比数列{bn}(bn>0,n∈N*),若bm=r,bn=s(n-m≥2,m,n∈N*),则可以得到bm+n=
n-m
sn
rm
n-m
sn
rm

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)在等差数列{an}中,公差为d,前n项和为Sn.在等比数列{bn}中,公比为q,前n项和为S'n(n∈N*).
(1)在等差数列{an}中,已知S10=30,S20=100,求S30
(2)在等差数列{an}中,根据要求完成下列表格,并对①、②式加以证明(其中m、m1、m2、n∈N*).
用Sm表示S2m S2m=2Sm+m2d
Sm1Sm2表示Sm1+m2 Sm1+m2=
Sm1+Sm2+m1m2d
Sm1+Sm2+m1m2d
用Sm表示Snm Snm=
nSm+
n(n-1)
2
m2d
nSm+
n(n-1)
2
m2d
(3)在下列各题中,任选一题进行解答,不必证明,解答正确得到相应的分数(若选做二题或更多题,则只批阅其中分值最高的一题,其余各题的解答,不管正确与否,一律视为无效,不予批阅):
(ⅰ) 类比(2)中①式,在等比数列{bn}中,写出相应的结论.
(ⅱ) (解答本题,最多得5分)类比(2)中②式,在等比数列{bn}中,写出相应的结论.
(ⅲ) (解答本题,最多得6分)在等差数列{an}中,将(2)中的①推广到一般情况.
(ⅳ) (解答本题,最多得6分)在等比数列{bn}中,将(2)中的①推广到一般情况.

查看答案和解析>>

同步练习册答案