精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x+sinx
x

(1)判断f(x)在区间(0,π)上的增减性并证明;
(2)设0<a<1,0<x<π,求证:(2a-1)sinx+(1-a)sin(1-a)x>0.
考点:综合法与分析法(选修)
专题:证明题,综合法
分析:(1)对函数f(x)求导数,得f′(x)=
xcosx-sinx
x2
,再讨论分子对应函数的单调性,得f′(x)的分子最大值小于0,从而得到f′(x)<0在区间(0,π)上恒成立,所以f(x)是区间(0,π)上的减函数;
(2)为了证明原不等式,利用(1)中的单调性,证明出不等式(1-a)sin(1-a)x≥(1-2a+a2)sinx区间(0,π)上恒成立.结合(1-2a+a2)sinx≥(1-2a)sinx得(1-a)sin(1-a)x≥(1-2a)sinx,移项整理即得原不等式成立.
解答: 解:(1)∵f(x)=
x+sinx
x
,∴f′(x)=
xcosx-sinx
x2

设g(x)=xcosx-sinx,x∈(0,π).则g′(x)=-xsinx<0
∴g(x)在(0,π)上为减函数 
 又∵g(0)=0,∴当x∈(0,π)时,g(x)<0,
∴当x∈(0,π)时,f′(x)=
g(x)
x2
<0,可得f(x)在区间(0,π)上是减函数; …(5分)
(2)当0<a<1且0<x<π时,原不等式等价于:(1-a)sin(1-a)x≥(1-2a)sinx.
下面证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sinx.…①
即sin(1-a)x≥(1-a)sinx.…②
亦即
sin(1-a)x
(1-a)x
sinx
x

由(1)知
sinx
x
在(0,π)上为减函数 
 又∵(1-a)x≤x,∴
sin(1-a)x
(1-a)x
sinx
x
,得不等式②成立,从而①成立
∵(1-2a+a2)sinx≥(1-2a)sinx.
∴(1-a)sin(1-a)x≥(1-2a)sinx.
综上所述,得0<a<1,0<x<π时,原不等式成立.…(12分)
点评:本题给出含三角函数的分式函数,求函数的单调性并证明不等式恒成立,着重考查了利用导数研究函数的单调性和不等式恒成立等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
x-y≤0
x+y-1≥0
y≤3
,则z=x+2y的最小值为(  )
A、1
B、
3
2
C、2
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2x2-6x+3,x∈[-1,1],则y的最小值是(  )
A、-
3
2
B、3
C、-1
D、不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①?x∈R,x2+2>0;
②?x∈N,x4≥1;
③?x∈Z,x2<1;
④?x∈Q,x2=3.
其中正确命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知实数t满足t∈(0,10),由t确定的两个任意点P(t,t),Q(10-t,0),问:
(1)直线PQ是否能通过点M(6,1)和点N(4,5)?
(2)在△OPQ中作内接正方形ABCD,顶点A、B在边OQ上,顶点C在边PQ上,顶点D在边OP上.
求图中阴影部分面积的最大值并求对应的顶点A、B、C、D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=-2tan(3x+
π
3
)的定义域、值域,并指出它的周期、奇偶性和单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+8ax+21<0的解集是{x|-7<x<-1},那么a的值是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比q=3,前3项和S3=
13
3
.若函数f(x)=Asin(2x+φ)(A>0,0<φ<π)在x=
π
6
处取得最大值,且最大值为a3
(1)求函数f(x)的解析式.
(2)若f(
α
2
)=1,α∈(
π
2
,π),求sin(a+
π
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:对任意实数x,不等式x2-2x>m恒成立;命题q:方程
x2
m-3
+
y2
5-m
=1表示焦点在x轴上的双曲线,
(Ⅰ)若命题q为真命题,求实数m的取值范围;
(Ⅱ)若命题“p或q”为真命题,且“p且q”为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案