精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|3x-2|+x
(1)求函数f(x)的值域;
(2)若g(x)=|x+1|,解不等式f(x)>g(x).

解:(1)由题意令3x-2=0,解得x=,分两种情况:
时,
时,
所以f(x)的值域为R;
(2)令x+1=0解得,x=-1,故分三种情况:
当x<-1时,原不等式等价于-3x+2+x>-1-x,解得x<-1,则解集为{x|x<-1};
时,原不等式等价于-3x+2+x>x+1,解得,则解集为{x|};
时,原不等式等价于3x-2+x>x+1,解得x>1,则解集为{x|x>1};
综上,不等式f(x)>g(x)的解集为
分析:(1)令3x-2=0求出x=,故根据x与的大小关系,分两种情况去掉绝对值化简解析式,并求出在每个范围内的值域,最后并在一起;
(2)令x+1=0得x=-1,由(1)故根据x与、-1的大小关系,分三种情况去掉绝对值化简解析式,并求出在每个范围内的解集,最后并在一起.
点评:本题的考点是含有绝对值的函数问题,即根据绝对值中式子与零的关系,进行分类求解,最后结果要求并集.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案